Nattorn Buthong, Arthorn Luangsodsai, K. Sinapiromsaran
{"title":"基于有序距离差的离群点检测评分","authors":"Nattorn Buthong, Arthorn Luangsodsai, K. Sinapiromsaran","doi":"10.1109/ICSEC.2013.6694771","DOIUrl":null,"url":null,"abstract":"Outlier Detection is one of the most important topics in data mining and knowledge discovery in databases. It is to find a methodology to detect instances in a dataset that do not conform to the rest of the dataset. Local Outlier Factor is one of the earlier outlier detection score. In this paper, we propose a new approach for parameter-free outlier detection algorithm to compute Ordered Distance Difference Outlier Factor. We formulate a new outlier score for each instance by considering the difference of ordered distances. Then, we use this value to compute an outlier score. We use a score of each instance to provide a degree of outlier and compare it with LOF. Our algorithm can produce OOF in Θ (n2) without parameter.","PeriodicalId":191620,"journal":{"name":"2013 International Computer Science and Engineering Conference (ICSEC)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Outlier detection score based on ordered distance difference\",\"authors\":\"Nattorn Buthong, Arthorn Luangsodsai, K. Sinapiromsaran\",\"doi\":\"10.1109/ICSEC.2013.6694771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Outlier Detection is one of the most important topics in data mining and knowledge discovery in databases. It is to find a methodology to detect instances in a dataset that do not conform to the rest of the dataset. Local Outlier Factor is one of the earlier outlier detection score. In this paper, we propose a new approach for parameter-free outlier detection algorithm to compute Ordered Distance Difference Outlier Factor. We formulate a new outlier score for each instance by considering the difference of ordered distances. Then, we use this value to compute an outlier score. We use a score of each instance to provide a degree of outlier and compare it with LOF. Our algorithm can produce OOF in Θ (n2) without parameter.\",\"PeriodicalId\":191620,\"journal\":{\"name\":\"2013 International Computer Science and Engineering Conference (ICSEC)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Computer Science and Engineering Conference (ICSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSEC.2013.6694771\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Computer Science and Engineering Conference (ICSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSEC.2013.6694771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Outlier detection score based on ordered distance difference
Outlier Detection is one of the most important topics in data mining and knowledge discovery in databases. It is to find a methodology to detect instances in a dataset that do not conform to the rest of the dataset. Local Outlier Factor is one of the earlier outlier detection score. In this paper, we propose a new approach for parameter-free outlier detection algorithm to compute Ordered Distance Difference Outlier Factor. We formulate a new outlier score for each instance by considering the difference of ordered distances. Then, we use this value to compute an outlier score. We use a score of each instance to provide a degree of outlier and compare it with LOF. Our algorithm can produce OOF in Θ (n2) without parameter.