基于有序距离差的离群点检测评分

Nattorn Buthong, Arthorn Luangsodsai, K. Sinapiromsaran
{"title":"基于有序距离差的离群点检测评分","authors":"Nattorn Buthong, Arthorn Luangsodsai, K. Sinapiromsaran","doi":"10.1109/ICSEC.2013.6694771","DOIUrl":null,"url":null,"abstract":"Outlier Detection is one of the most important topics in data mining and knowledge discovery in databases. It is to find a methodology to detect instances in a dataset that do not conform to the rest of the dataset. Local Outlier Factor is one of the earlier outlier detection score. In this paper, we propose a new approach for parameter-free outlier detection algorithm to compute Ordered Distance Difference Outlier Factor. We formulate a new outlier score for each instance by considering the difference of ordered distances. Then, we use this value to compute an outlier score. We use a score of each instance to provide a degree of outlier and compare it with LOF. Our algorithm can produce OOF in Θ (n2) without parameter.","PeriodicalId":191620,"journal":{"name":"2013 International Computer Science and Engineering Conference (ICSEC)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Outlier detection score based on ordered distance difference\",\"authors\":\"Nattorn Buthong, Arthorn Luangsodsai, K. Sinapiromsaran\",\"doi\":\"10.1109/ICSEC.2013.6694771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Outlier Detection is one of the most important topics in data mining and knowledge discovery in databases. It is to find a methodology to detect instances in a dataset that do not conform to the rest of the dataset. Local Outlier Factor is one of the earlier outlier detection score. In this paper, we propose a new approach for parameter-free outlier detection algorithm to compute Ordered Distance Difference Outlier Factor. We formulate a new outlier score for each instance by considering the difference of ordered distances. Then, we use this value to compute an outlier score. We use a score of each instance to provide a degree of outlier and compare it with LOF. Our algorithm can produce OOF in Θ (n2) without parameter.\",\"PeriodicalId\":191620,\"journal\":{\"name\":\"2013 International Computer Science and Engineering Conference (ICSEC)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Computer Science and Engineering Conference (ICSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSEC.2013.6694771\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Computer Science and Engineering Conference (ICSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSEC.2013.6694771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

异常点检测是数据挖掘和数据库知识发现领域的重要课题之一。它是找到一种方法来检测数据集中不符合数据集其余部分的实例。局部离群因子是早期离群检测分数之一。本文提出了一种新的无参数离群值检测算法来计算有序距离差离群值因子。通过考虑有序距离的差异,我们为每个实例制定了一个新的离群值。然后,我们用这个值来计算一个离群值。我们使用每个实例的分数来提供离群值的程度,并将其与LOF进行比较。我们的算法可以在Θ (n2)内产生无参数的OOF。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Outlier detection score based on ordered distance difference
Outlier Detection is one of the most important topics in data mining and knowledge discovery in databases. It is to find a methodology to detect instances in a dataset that do not conform to the rest of the dataset. Local Outlier Factor is one of the earlier outlier detection score. In this paper, we propose a new approach for parameter-free outlier detection algorithm to compute Ordered Distance Difference Outlier Factor. We formulate a new outlier score for each instance by considering the difference of ordered distances. Then, we use this value to compute an outlier score. We use a score of each instance to provide a degree of outlier and compare it with LOF. Our algorithm can produce OOF in Θ (n2) without parameter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信