让我们来预测一下谁将换一份新工作

Rania MKHININI GAHAR, Adel Hidri, Minyar Sassi Hidri
{"title":"让我们来预测一下谁将换一份新工作","authors":"Rania MKHININI GAHAR, Adel Hidri, Minyar Sassi Hidri","doi":"10.1109/IC_ASET58101.2023.10150675","DOIUrl":null,"url":null,"abstract":"Any company's human resources department faces the challenge of predicting whether an applicant will search for a new job or stay with the company. In this paper, we discuss how machine learning (ML) is used to predict who will move to a new job. First, the data is pre-processed into a suitable format for ML models. To deal with categorical features, data encoding is applied and several MLA (ML Algorithms) are performed including Random Forest (RF), Logistic Regression (LR), Decision Tree (DT), and eXtreme Gradient Boosting (XGBoost). To improve the performance of ML models, the synthetic minority oversampling technique (SMOTE) is used to retain them. Models are assessed using decision support metrics such as precision, recall, F1-Score, and accuracy.","PeriodicalId":272261,"journal":{"name":"2023 IEEE International Conference on Advanced Systems and Emergent Technologies (IC_ASET)","volume":"178 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Let's Predict Who Will Move to a New Job\",\"authors\":\"Rania MKHININI GAHAR, Adel Hidri, Minyar Sassi Hidri\",\"doi\":\"10.1109/IC_ASET58101.2023.10150675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Any company's human resources department faces the challenge of predicting whether an applicant will search for a new job or stay with the company. In this paper, we discuss how machine learning (ML) is used to predict who will move to a new job. First, the data is pre-processed into a suitable format for ML models. To deal with categorical features, data encoding is applied and several MLA (ML Algorithms) are performed including Random Forest (RF), Logistic Regression (LR), Decision Tree (DT), and eXtreme Gradient Boosting (XGBoost). To improve the performance of ML models, the synthetic minority oversampling technique (SMOTE) is used to retain them. Models are assessed using decision support metrics such as precision, recall, F1-Score, and accuracy.\",\"PeriodicalId\":272261,\"journal\":{\"name\":\"2023 IEEE International Conference on Advanced Systems and Emergent Technologies (IC_ASET)\",\"volume\":\"178 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Advanced Systems and Emergent Technologies (IC_ASET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC_ASET58101.2023.10150675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Advanced Systems and Emergent Technologies (IC_ASET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC_ASET58101.2023.10150675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

任何一家公司的人力资源部门都面临着这样的挑战:预测应聘者是去找新工作还是留在公司。在本文中,我们讨论了如何使用机器学习(ML)来预测谁将转到新工作。首先,将数据预处理成适合ML模型的格式。为了处理分类特征,应用了数据编码并执行了几种MLA (ML算法),包括随机森林(RF),逻辑回归(LR),决策树(DT)和极端梯度增强(XGBoost)。为了提高机器学习模型的性能,采用了合成少数派过采样技术(SMOTE)来保留它们。模型的评估使用决策支持指标,如精度、召回率、F1-Score和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Let's Predict Who Will Move to a New Job
Any company's human resources department faces the challenge of predicting whether an applicant will search for a new job or stay with the company. In this paper, we discuss how machine learning (ML) is used to predict who will move to a new job. First, the data is pre-processed into a suitable format for ML models. To deal with categorical features, data encoding is applied and several MLA (ML Algorithms) are performed including Random Forest (RF), Logistic Regression (LR), Decision Tree (DT), and eXtreme Gradient Boosting (XGBoost). To improve the performance of ML models, the synthetic minority oversampling technique (SMOTE) is used to retain them. Models are assessed using decision support metrics such as precision, recall, F1-Score, and accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信