通过算法套件上的量子距离度量对量子处理器性能进行基准测试

S. Stein, N. Wiebe, James Ang, A. Li
{"title":"通过算法套件上的量子距离度量对量子处理器性能进行基准测试","authors":"S. Stein, N. Wiebe, James Ang, A. Li","doi":"10.1109/IPDPSW55747.2022.00106","DOIUrl":null,"url":null,"abstract":"Quantum computing is poised to solve computational paradigms that classical computing could never feasibly reach. Tasks such as prime factorization to Quantum Chemistry are examples of classically difficult problems that have analogous algorithms that are sped up on quantum computers. To attain this computational advantage, we must first traverse the noisy intermediate scale quantum (NISQ) era, in which quantum processors suffer from compounding noise factors that can lead to unreliable algorithm induction producing noisy results. We describe QASMBench, a suite of QASM-level (Quantum assembly language) benchmarks that challenge all realisable angles of quantum processor noise. We evaluate a large portion of these algorithms by performing density matrix tomography on 14 IBMQ Quantum devices.","PeriodicalId":286968,"journal":{"name":"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","volume":"179 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Benchmarking Quantum Processor Performance through Quantum Distance Metrics Over An Algorithm Suite\",\"authors\":\"S. Stein, N. Wiebe, James Ang, A. Li\",\"doi\":\"10.1109/IPDPSW55747.2022.00106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum computing is poised to solve computational paradigms that classical computing could never feasibly reach. Tasks such as prime factorization to Quantum Chemistry are examples of classically difficult problems that have analogous algorithms that are sped up on quantum computers. To attain this computational advantage, we must first traverse the noisy intermediate scale quantum (NISQ) era, in which quantum processors suffer from compounding noise factors that can lead to unreliable algorithm induction producing noisy results. We describe QASMBench, a suite of QASM-level (Quantum assembly language) benchmarks that challenge all realisable angles of quantum processor noise. We evaluate a large portion of these algorithms by performing density matrix tomography on 14 IBMQ Quantum devices.\",\"PeriodicalId\":286968,\"journal\":{\"name\":\"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)\",\"volume\":\"179 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW55747.2022.00106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW55747.2022.00106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

量子计算有望解决经典计算永远无法实现的计算范式。量子化学的质因数分解等任务是经典难题的例子,它们具有在量子计算机上加速的类似算法。为了获得这种计算优势,我们必须首先穿越噪声中尺度量子(NISQ)时代,在这个时代,量子处理器受到复合噪声因素的影响,可能导致不可靠的算法归纳产生噪声结果。我们描述了QASMBench,一套qasm级(量子汇编语言)基准测试,挑战量子处理器噪声的所有可实现角度。我们通过在14个IBMQ量子设备上执行密度矩阵断层扫描来评估这些算法的大部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Benchmarking Quantum Processor Performance through Quantum Distance Metrics Over An Algorithm Suite
Quantum computing is poised to solve computational paradigms that classical computing could never feasibly reach. Tasks such as prime factorization to Quantum Chemistry are examples of classically difficult problems that have analogous algorithms that are sped up on quantum computers. To attain this computational advantage, we must first traverse the noisy intermediate scale quantum (NISQ) era, in which quantum processors suffer from compounding noise factors that can lead to unreliable algorithm induction producing noisy results. We describe QASMBench, a suite of QASM-level (Quantum assembly language) benchmarks that challenge all realisable angles of quantum processor noise. We evaluate a large portion of these algorithms by performing density matrix tomography on 14 IBMQ Quantum devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信