{"title":"分布式实时系统的容错调度算法","authors":"Tatsuhiro Tsuchiya, Yoshiaki Kakuda, T. Kikuno","doi":"10.1109/WPDRTS.1995.470501","DOIUrl":null,"url":null,"abstract":"In a distributed real-time system, tolerance to faults on processing nodes in the system is achieved by means of redundant nodes and a fault-tolerant scheduling algorithm. Since redundant nodes increase total failure rate of the system, the number of such redundant nodes should be small. This paper proposes a procedure for fault-tolerant scheduling, which realizes fault-tolerance via a small number of redundant nodes. The procedure is based on such a technique that allows multiple copies of a task to be executed concurrently. It achieves efficient utilization of nodes by forcing copies being executed to terminate immediately after having obtained the first result of these copies. A fundamental scheduling algorithm, into which the procedure is incorporated, is defined and its simulation results are shown.<<ETX>>","PeriodicalId":438550,"journal":{"name":"Proceedings of Third Workshop on Parallel and Distributed Real-Time Systems","volume":"41 21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Fault-tolerant scheduling algorithm for distributed real-time systems\",\"authors\":\"Tatsuhiro Tsuchiya, Yoshiaki Kakuda, T. Kikuno\",\"doi\":\"10.1109/WPDRTS.1995.470501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a distributed real-time system, tolerance to faults on processing nodes in the system is achieved by means of redundant nodes and a fault-tolerant scheduling algorithm. Since redundant nodes increase total failure rate of the system, the number of such redundant nodes should be small. This paper proposes a procedure for fault-tolerant scheduling, which realizes fault-tolerance via a small number of redundant nodes. The procedure is based on such a technique that allows multiple copies of a task to be executed concurrently. It achieves efficient utilization of nodes by forcing copies being executed to terminate immediately after having obtained the first result of these copies. A fundamental scheduling algorithm, into which the procedure is incorporated, is defined and its simulation results are shown.<<ETX>>\",\"PeriodicalId\":438550,\"journal\":{\"name\":\"Proceedings of Third Workshop on Parallel and Distributed Real-Time Systems\",\"volume\":\"41 21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Third Workshop on Parallel and Distributed Real-Time Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WPDRTS.1995.470501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Third Workshop on Parallel and Distributed Real-Time Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WPDRTS.1995.470501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fault-tolerant scheduling algorithm for distributed real-time systems
In a distributed real-time system, tolerance to faults on processing nodes in the system is achieved by means of redundant nodes and a fault-tolerant scheduling algorithm. Since redundant nodes increase total failure rate of the system, the number of such redundant nodes should be small. This paper proposes a procedure for fault-tolerant scheduling, which realizes fault-tolerance via a small number of redundant nodes. The procedure is based on such a technique that allows multiple copies of a task to be executed concurrently. It achieves efficient utilization of nodes by forcing copies being executed to terminate immediately after having obtained the first result of these copies. A fundamental scheduling algorithm, into which the procedure is incorporated, is defined and its simulation results are shown.<>