基于汽车故障数据的保修成本预测

T. Hrycej, M. Grabert
{"title":"基于汽车故障数据的保修成本预测","authors":"T. Hrycej, M. Grabert","doi":"10.1109/IJCNN.2007.4370939","DOIUrl":null,"url":null,"abstract":"A failure and warranty cost model is gained from a failure database. The model is a combination of statistical components with a multi-layer perceptron and a cross-entropy based learning rule. The model is used for forecasting warranty costs in alternative warranty condition scenarios. The estimate of forecast variance considers both the individual vehicle risk and the overall manufacturing quality fluctuation risk.","PeriodicalId":350091,"journal":{"name":"2007 International Joint Conference on Neural Networks","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Warranty Cost Forecast Based on Car Failure Data\",\"authors\":\"T. Hrycej, M. Grabert\",\"doi\":\"10.1109/IJCNN.2007.4370939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A failure and warranty cost model is gained from a failure database. The model is a combination of statistical components with a multi-layer perceptron and a cross-entropy based learning rule. The model is used for forecasting warranty costs in alternative warranty condition scenarios. The estimate of forecast variance considers both the individual vehicle risk and the overall manufacturing quality fluctuation risk.\",\"PeriodicalId\":350091,\"journal\":{\"name\":\"2007 International Joint Conference on Neural Networks\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2007.4370939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2007.4370939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

从故障数据库中得到故障和保修成本模型。该模型将统计成分与多层感知器和基于交叉熵的学习规则相结合。该模型用于预测不同保修条件下的保修成本。预测方差的估计既考虑了单个车辆的风险,也考虑了整体的制造质量波动风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Warranty Cost Forecast Based on Car Failure Data
A failure and warranty cost model is gained from a failure database. The model is a combination of statistical components with a multi-layer perceptron and a cross-entropy based learning rule. The model is used for forecasting warranty costs in alternative warranty condition scenarios. The estimate of forecast variance considers both the individual vehicle risk and the overall manufacturing quality fluctuation risk.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信