Taieba Tuba Rahman, Al Mazedur Rahman, Z. Pei, Ketan Thakare, Hongmin Qin, A. Khan
{"title":"富微藻曲奇面团的3D打印:确定连续挤压工艺参数的可行区域","authors":"Taieba Tuba Rahman, Al Mazedur Rahman, Z. Pei, Ketan Thakare, Hongmin Qin, A. Khan","doi":"10.20517/gmo.2022.13","DOIUrl":null,"url":null,"abstract":"Microalgae can be part of the solution to the global food crisis, as they have high nutritional values. Recently, 3D printing of microalgae-enriched snacks has been reported with the capability to customize nutritional profiles, shapes, and textures of the snacks. Because the process parameters of extrusion-based 3D printing affect the printability of cookie dough, it is important to know the levels of process parameters leading to continuous extrusion. This study investigated feasible regions of printing process parameters for continuous extrusion of microalgae (Arthrospira Platensis) enriched cookie dough. The process parameters studied were nozzle diameter, printing speed, and air pressure. The feasible regions were determined by visual inspections of printed strands. The results show that, for smaller nozzle diameters and higher printing speeds, higher air pressures are required to ensure continuous extrusion. The identified feasible regions from this study would be helpful when deciding the appropriate nozzle diameter, printing speed, and air pressure to print microalgae-enriched cookie dough and other materials with similar rheological properties in extrusion-based 3D printing.","PeriodicalId":178988,"journal":{"name":"Green Manufacturing Open","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"3D printing of microalgae-enriched cookie dough: determining feasible regions of process parameters for continuous extrusion\",\"authors\":\"Taieba Tuba Rahman, Al Mazedur Rahman, Z. Pei, Ketan Thakare, Hongmin Qin, A. Khan\",\"doi\":\"10.20517/gmo.2022.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microalgae can be part of the solution to the global food crisis, as they have high nutritional values. Recently, 3D printing of microalgae-enriched snacks has been reported with the capability to customize nutritional profiles, shapes, and textures of the snacks. Because the process parameters of extrusion-based 3D printing affect the printability of cookie dough, it is important to know the levels of process parameters leading to continuous extrusion. This study investigated feasible regions of printing process parameters for continuous extrusion of microalgae (Arthrospira Platensis) enriched cookie dough. The process parameters studied were nozzle diameter, printing speed, and air pressure. The feasible regions were determined by visual inspections of printed strands. The results show that, for smaller nozzle diameters and higher printing speeds, higher air pressures are required to ensure continuous extrusion. The identified feasible regions from this study would be helpful when deciding the appropriate nozzle diameter, printing speed, and air pressure to print microalgae-enriched cookie dough and other materials with similar rheological properties in extrusion-based 3D printing.\",\"PeriodicalId\":178988,\"journal\":{\"name\":\"Green Manufacturing Open\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Manufacturing Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/gmo.2022.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Manufacturing Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/gmo.2022.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
3D printing of microalgae-enriched cookie dough: determining feasible regions of process parameters for continuous extrusion
Microalgae can be part of the solution to the global food crisis, as they have high nutritional values. Recently, 3D printing of microalgae-enriched snacks has been reported with the capability to customize nutritional profiles, shapes, and textures of the snacks. Because the process parameters of extrusion-based 3D printing affect the printability of cookie dough, it is important to know the levels of process parameters leading to continuous extrusion. This study investigated feasible regions of printing process parameters for continuous extrusion of microalgae (Arthrospira Platensis) enriched cookie dough. The process parameters studied were nozzle diameter, printing speed, and air pressure. The feasible regions were determined by visual inspections of printed strands. The results show that, for smaller nozzle diameters and higher printing speeds, higher air pressures are required to ensure continuous extrusion. The identified feasible regions from this study would be helpful when deciding the appropriate nozzle diameter, printing speed, and air pressure to print microalgae-enriched cookie dough and other materials with similar rheological properties in extrusion-based 3D printing.