设计一种人工神经网络系统,从3导联动态心电图记录中获取12导联心电图

R.N. Kuppuraj, S. Napper
{"title":"设计一种人工神经网络系统,从3导联动态心电图记录中获取12导联心电图","authors":"R.N. Kuppuraj, S. Napper","doi":"10.1109/IEMBS.1994.415351","DOIUrl":null,"url":null,"abstract":"Cardiac experts often make critical diagnoses utilizing information from the standard 12-lead ECG rather than Holter recordings. The development of a Neural Network (NN) system to derive the 12-lead ECG from modified VCG leads recorded using Holter recordings is explored here. The requirements (data acquisition, hardware, software, etc.) of such a system are addressed. A NN to derive the 12-lead ECG with the 3-lead modified VCG as its input is designed.","PeriodicalId":344622,"journal":{"name":"Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society","volume":"664 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Design for an artificial neural network system to obtain 12-lead ECG from 3-lead Holter VCG recordings\",\"authors\":\"R.N. Kuppuraj, S. Napper\",\"doi\":\"10.1109/IEMBS.1994.415351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cardiac experts often make critical diagnoses utilizing information from the standard 12-lead ECG rather than Holter recordings. The development of a Neural Network (NN) system to derive the 12-lead ECG from modified VCG leads recorded using Holter recordings is explored here. The requirements (data acquisition, hardware, software, etc.) of such a system are addressed. A NN to derive the 12-lead ECG with the 3-lead modified VCG as its input is designed.\",\"PeriodicalId\":344622,\"journal\":{\"name\":\"Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society\",\"volume\":\"664 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMBS.1994.415351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMBS.1994.415351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

心脏专家经常利用标准12导联心电图而不是动态心电图记录的信息做出关键诊断。本文探讨了一种神经网络(NN)系统的发展,该系统可以从使用霍尔特记录的修改的VCG导联中导出12导联心电图。解决了这种系统的需求(数据采集、硬件、软件等)。设计了一种以3导联修正VCG为输入的12导联心电图神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design for an artificial neural network system to obtain 12-lead ECG from 3-lead Holter VCG recordings
Cardiac experts often make critical diagnoses utilizing information from the standard 12-lead ECG rather than Holter recordings. The development of a Neural Network (NN) system to derive the 12-lead ECG from modified VCG leads recorded using Holter recordings is explored here. The requirements (data acquisition, hardware, software, etc.) of such a system are addressed. A NN to derive the 12-lead ECG with the 3-lead modified VCG as its input is designed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信