J. Payne, D. Knoll, A. McPherson, W. Taitano, L. Chacón, Guangye Chen, S. Pakin
{"title":"多尺度等离子体应用的计算协同设计:过程和初步结果","authors":"J. Payne, D. Knoll, A. McPherson, W. Taitano, L. Chacón, Guangye Chen, S. Pakin","doi":"10.1109/IPDPS.2014.114","DOIUrl":null,"url":null,"abstract":"As computer architectures become increasingly heterogeneous the need for algorithms and applications that can exploit these new architectures grows more pressing. This paper demonstrates that co-designing a multi-architecture, multi-scale, highly optimized framework with its associated plasma-physics application can provide both portability across CPUs and accelerators and high performance. Our framework utilizes multiple abstraction layers in order to maximize code reuse between architectures while providing low-level abstractions to incorporate architecture-specific optimizations such as vectorization or hardware fused multiply-add. We describe a co-design process used to enable a plasma physics application to scale well to large systems while also improving on both the accuracy and speed of the simulations. Optimized multi-core results will be presented to demonstrate ability to isolate large amounts of computational work with minimal communication.","PeriodicalId":309291,"journal":{"name":"2014 IEEE 28th International Parallel and Distributed Processing Symposium","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Computational Co-design of a Multiscale Plasma Application: A Process and Initial Results\",\"authors\":\"J. Payne, D. Knoll, A. McPherson, W. Taitano, L. Chacón, Guangye Chen, S. Pakin\",\"doi\":\"10.1109/IPDPS.2014.114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As computer architectures become increasingly heterogeneous the need for algorithms and applications that can exploit these new architectures grows more pressing. This paper demonstrates that co-designing a multi-architecture, multi-scale, highly optimized framework with its associated plasma-physics application can provide both portability across CPUs and accelerators and high performance. Our framework utilizes multiple abstraction layers in order to maximize code reuse between architectures while providing low-level abstractions to incorporate architecture-specific optimizations such as vectorization or hardware fused multiply-add. We describe a co-design process used to enable a plasma physics application to scale well to large systems while also improving on both the accuracy and speed of the simulations. Optimized multi-core results will be presented to demonstrate ability to isolate large amounts of computational work with minimal communication.\",\"PeriodicalId\":309291,\"journal\":{\"name\":\"2014 IEEE 28th International Parallel and Distributed Processing Symposium\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 28th International Parallel and Distributed Processing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS.2014.114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 28th International Parallel and Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2014.114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computational Co-design of a Multiscale Plasma Application: A Process and Initial Results
As computer architectures become increasingly heterogeneous the need for algorithms and applications that can exploit these new architectures grows more pressing. This paper demonstrates that co-designing a multi-architecture, multi-scale, highly optimized framework with its associated plasma-physics application can provide both portability across CPUs and accelerators and high performance. Our framework utilizes multiple abstraction layers in order to maximize code reuse between architectures while providing low-level abstractions to incorporate architecture-specific optimizations such as vectorization or hardware fused multiply-add. We describe a co-design process used to enable a plasma physics application to scale well to large systems while also improving on both the accuracy and speed of the simulations. Optimized multi-core results will be presented to demonstrate ability to isolate large amounts of computational work with minimal communication.