优化GPU缓存策略为MI工作负载*

Johnathan Alsop, Matthew D. Sinclair, Srikant Bharadwaj, A. Duțu, Anthony Gutierrez, Onur Kayiran, Michael LeBeane, Sooraj Puthoor, Xianwei Zhang, T. Yeh, Bradford M. Beckmann
{"title":"优化GPU缓存策略为MI工作负载*","authors":"Johnathan Alsop, Matthew D. Sinclair, Srikant Bharadwaj, A. Duțu, Anthony Gutierrez, Onur Kayiran, Michael LeBeane, Sooraj Puthoor, Xianwei Zhang, T. Yeh, Bradford M. Beckmann","doi":"10.1109/IISWC47752.2019.9041977","DOIUrl":null,"url":null,"abstract":"In recent years, machine intelligence (MI) applications have emerged as a major driver for the computing industry. Optimizing these workloads is important, but complicated. As memory demands grow and data movement overheads increasingly limit performance, determining the best GPU caching policy to use for a diverse range of MI workloads represents one important challenge. To study this, we evaluate 17 MI applications and characterize their behavior using a range of GPU caching strategies. In our evaluations, we find that the choice of caching policy in GPU caches involves multiple performance trade-offs and interactions, and there is no one-size-fits-all GPU caching policy for MI workloads. Based on detailed simulation results, we motivate and evaluate a set of cache optimizations that consistently match the performance of the best static GPU caching policies.","PeriodicalId":121068,"journal":{"name":"2019 IEEE International Symposium on Workload Characterization (IISWC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Optimizing GPU Cache Policies for MI Workloads*\",\"authors\":\"Johnathan Alsop, Matthew D. Sinclair, Srikant Bharadwaj, A. Duțu, Anthony Gutierrez, Onur Kayiran, Michael LeBeane, Sooraj Puthoor, Xianwei Zhang, T. Yeh, Bradford M. Beckmann\",\"doi\":\"10.1109/IISWC47752.2019.9041977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, machine intelligence (MI) applications have emerged as a major driver for the computing industry. Optimizing these workloads is important, but complicated. As memory demands grow and data movement overheads increasingly limit performance, determining the best GPU caching policy to use for a diverse range of MI workloads represents one important challenge. To study this, we evaluate 17 MI applications and characterize their behavior using a range of GPU caching strategies. In our evaluations, we find that the choice of caching policy in GPU caches involves multiple performance trade-offs and interactions, and there is no one-size-fits-all GPU caching policy for MI workloads. Based on detailed simulation results, we motivate and evaluate a set of cache optimizations that consistently match the performance of the best static GPU caching policies.\",\"PeriodicalId\":121068,\"journal\":{\"name\":\"2019 IEEE International Symposium on Workload Characterization (IISWC)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Symposium on Workload Characterization (IISWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IISWC47752.2019.9041977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Workload Characterization (IISWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISWC47752.2019.9041977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

近年来,机器智能(MI)应用已成为计算行业的主要驱动力。优化这些工作负载很重要,但也很复杂。随着内存需求的增长和数据移动开销越来越多地限制性能,确定用于各种MI工作负载的最佳GPU缓存策略是一个重要的挑战。为了研究这一点,我们评估了17个MI应用程序,并使用一系列GPU缓存策略描述了它们的行为。在我们的评估中,我们发现GPU缓存中缓存策略的选择涉及多个性能权衡和交互,并且对于MI工作负载,没有一个通用的GPU缓存策略。基于详细的模拟结果,我们激励并评估了一组缓存优化,这些优化始终与最佳静态GPU缓存策略的性能相匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing GPU Cache Policies for MI Workloads*
In recent years, machine intelligence (MI) applications have emerged as a major driver for the computing industry. Optimizing these workloads is important, but complicated. As memory demands grow and data movement overheads increasingly limit performance, determining the best GPU caching policy to use for a diverse range of MI workloads represents one important challenge. To study this, we evaluate 17 MI applications and characterize their behavior using a range of GPU caching strategies. In our evaluations, we find that the choice of caching policy in GPU caches involves multiple performance trade-offs and interactions, and there is no one-size-fits-all GPU caching policy for MI workloads. Based on detailed simulation results, we motivate and evaluate a set of cache optimizations that consistently match the performance of the best static GPU caching policies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信