概率定向问题的一种元启发式算法

Xiaochen Chou, L. Gambardella, R. Montemanni
{"title":"概率定向问题的一种元启发式算法","authors":"Xiaochen Chou, L. Gambardella, R. Montemanni","doi":"10.1145/3366750.3366761","DOIUrl":null,"url":null,"abstract":"The Probabilistic Orienteering Problem (POP) is a variant of the orienteering problem where customers are available with a certain probability. In a previous work, we approximated its objective function value by using a Monte Carlo Sampling method. A heuristic speed-up criterion is considered in the objective function evaluator. In this work we study systematically the impact of the heuristic speed-up criterion in terms of precision and speed on the Monte Carlo evaluator, as well as the performance of a POP solver we propose, based on the embedding of the Monte Carlo evaluator into a Random Restart Local Search metaheuristic algorithm.","PeriodicalId":145378,"journal":{"name":"Proceedings of the 2019 2nd International Conference on Machine Learning and Machine Intelligence","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Metaheuristic Algorithm for the Probabilistic Orienteering Problem\",\"authors\":\"Xiaochen Chou, L. Gambardella, R. Montemanni\",\"doi\":\"10.1145/3366750.3366761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Probabilistic Orienteering Problem (POP) is a variant of the orienteering problem where customers are available with a certain probability. In a previous work, we approximated its objective function value by using a Monte Carlo Sampling method. A heuristic speed-up criterion is considered in the objective function evaluator. In this work we study systematically the impact of the heuristic speed-up criterion in terms of precision and speed on the Monte Carlo evaluator, as well as the performance of a POP solver we propose, based on the embedding of the Monte Carlo evaluator into a Random Restart Local Search metaheuristic algorithm.\",\"PeriodicalId\":145378,\"journal\":{\"name\":\"Proceedings of the 2019 2nd International Conference on Machine Learning and Machine Intelligence\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 2nd International Conference on Machine Learning and Machine Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3366750.3366761\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 2nd International Conference on Machine Learning and Machine Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3366750.3366761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

概率定向问题(POP)是定向问题的一种变体,其中客户以一定的概率存在。在之前的工作中,我们使用蒙特卡罗采样方法近似其目标函数值。在目标函数评估器中考虑了启发式加速准则。在这项工作中,我们系统地研究了启发式加速准则在精度和速度方面对蒙特卡罗评估器的影响,以及我们提出的基于蒙特卡罗评估器嵌入随机重新启动局部搜索元启发式算法的POP求解器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Metaheuristic Algorithm for the Probabilistic Orienteering Problem
The Probabilistic Orienteering Problem (POP) is a variant of the orienteering problem where customers are available with a certain probability. In a previous work, we approximated its objective function value by using a Monte Carlo Sampling method. A heuristic speed-up criterion is considered in the objective function evaluator. In this work we study systematically the impact of the heuristic speed-up criterion in terms of precision and speed on the Monte Carlo evaluator, as well as the performance of a POP solver we propose, based on the embedding of the Monte Carlo evaluator into a Random Restart Local Search metaheuristic algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信