{"title":"基于优化算法的高效k -均值聚类初始化","authors":"V. Divya, R. Deepika, C. Yamini, P. Sobiyaa","doi":"10.1109/ICACCE46606.2019.9079998","DOIUrl":null,"url":null,"abstract":"In data mining has a lot of technique for knowledge discovery. In this Clustering method is very well technique for unsupervised learning. It's important objective is to find a high-quality cluster where the distance between clusters are maximal and the distance in the cluster is minimal. K-means algorithm is applied in this paper for its simplicity. It has been widely discussed and applied in pattern recognition and machine learning. However, the K-means algorithm could not guarantee unique clustering results for the same dataset because its initial cluster centers are select randomly. To avoid such issues a new initialization method is proposed in the Improved K-means algorithm with Cuckoo Search algorithm. The proposed method uses different numerical datasets like iris, wine and solar datasets (Ames, Chariton stations). The K-means clustering solutions are comparable with cuckoo search initialization methods using different measures such as Accuracy, Precision and Recall, F1-score, Silhouette value and MSE (Mean Square Error). The experimental solution represents the effectiveness of the proposed method.","PeriodicalId":317123,"journal":{"name":"2019 International Conference on Advances in Computing and Communication Engineering (ICACCE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Efficient K-Means Clustering Initialization Using Optimization Algorithm\",\"authors\":\"V. Divya, R. Deepika, C. Yamini, P. Sobiyaa\",\"doi\":\"10.1109/ICACCE46606.2019.9079998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In data mining has a lot of technique for knowledge discovery. In this Clustering method is very well technique for unsupervised learning. It's important objective is to find a high-quality cluster where the distance between clusters are maximal and the distance in the cluster is minimal. K-means algorithm is applied in this paper for its simplicity. It has been widely discussed and applied in pattern recognition and machine learning. However, the K-means algorithm could not guarantee unique clustering results for the same dataset because its initial cluster centers are select randomly. To avoid such issues a new initialization method is proposed in the Improved K-means algorithm with Cuckoo Search algorithm. The proposed method uses different numerical datasets like iris, wine and solar datasets (Ames, Chariton stations). The K-means clustering solutions are comparable with cuckoo search initialization methods using different measures such as Accuracy, Precision and Recall, F1-score, Silhouette value and MSE (Mean Square Error). The experimental solution represents the effectiveness of the proposed method.\",\"PeriodicalId\":317123,\"journal\":{\"name\":\"2019 International Conference on Advances in Computing and Communication Engineering (ICACCE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Advances in Computing and Communication Engineering (ICACCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACCE46606.2019.9079998\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Advances in Computing and Communication Engineering (ICACCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACCE46606.2019.9079998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Efficient K-Means Clustering Initialization Using Optimization Algorithm
In data mining has a lot of technique for knowledge discovery. In this Clustering method is very well technique for unsupervised learning. It's important objective is to find a high-quality cluster where the distance between clusters are maximal and the distance in the cluster is minimal. K-means algorithm is applied in this paper for its simplicity. It has been widely discussed and applied in pattern recognition and machine learning. However, the K-means algorithm could not guarantee unique clustering results for the same dataset because its initial cluster centers are select randomly. To avoid such issues a new initialization method is proposed in the Improved K-means algorithm with Cuckoo Search algorithm. The proposed method uses different numerical datasets like iris, wine and solar datasets (Ames, Chariton stations). The K-means clustering solutions are comparable with cuckoo search initialization methods using different measures such as Accuracy, Precision and Recall, F1-score, Silhouette value and MSE (Mean Square Error). The experimental solution represents the effectiveness of the proposed method.