一种用于城市环境下可遍历性分析的编码器-解码器结构性能改进的混合方法

Daniel Fusaro, Emilio Olivastri, D. Evangelista, Pietro Iob, A. Pretto
{"title":"一种用于城市环境下可遍历性分析的编码器-解码器结构性能改进的混合方法","authors":"Daniel Fusaro, Emilio Olivastri, D. Evangelista, Pietro Iob, A. Pretto","doi":"10.1109/iv51971.2022.9827248","DOIUrl":null,"url":null,"abstract":"Self-driving vehicles and autonomous ground robots require a reliable and accurate method to analyze the traversability of the surrounding environment for safe navigation. This paper proposes a hybrid approach that combines geometric and appearance features for training Deep Encoder-Decoder architectures to detect the traversability score in real urban contexts. The proposed approach has been tested with two Deep Learning architectures on a public dataset of outdoor driving scenarios. Thanks to our approach, we are able to reach high levels of accuracy in detecting the correct traversability score in environments of highly variable complexity. This demonstrates the effectiveness and robustness of the proposed method.","PeriodicalId":184622,"journal":{"name":"2022 IEEE Intelligent Vehicles Symposium (IV)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Hybrid Approach to Improve the Performance of Encoder-Decoder Architectures for Traversability Analysis in Urban Environments\",\"authors\":\"Daniel Fusaro, Emilio Olivastri, D. Evangelista, Pietro Iob, A. Pretto\",\"doi\":\"10.1109/iv51971.2022.9827248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Self-driving vehicles and autonomous ground robots require a reliable and accurate method to analyze the traversability of the surrounding environment for safe navigation. This paper proposes a hybrid approach that combines geometric and appearance features for training Deep Encoder-Decoder architectures to detect the traversability score in real urban contexts. The proposed approach has been tested with two Deep Learning architectures on a public dataset of outdoor driving scenarios. Thanks to our approach, we are able to reach high levels of accuracy in detecting the correct traversability score in environments of highly variable complexity. This demonstrates the effectiveness and robustness of the proposed method.\",\"PeriodicalId\":184622,\"journal\":{\"name\":\"2022 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iv51971.2022.9827248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iv51971.2022.9827248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

自动驾驶汽车和自主地面机器人需要一种可靠而准确的方法来分析周围环境的可穿越性,以实现安全导航。本文提出了一种结合几何和外观特征的混合方法,用于训练深度编码器-解码器架构,以检测真实城市环境中的可遍历性分数。所提出的方法已经在户外驾驶场景的公共数据集上用两个深度学习架构进行了测试。由于我们的方法,我们能够在高度可变复杂性的环境中检测正确的可遍历性得分,达到很高的准确性。这证明了该方法的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Hybrid Approach to Improve the Performance of Encoder-Decoder Architectures for Traversability Analysis in Urban Environments
Self-driving vehicles and autonomous ground robots require a reliable and accurate method to analyze the traversability of the surrounding environment for safe navigation. This paper proposes a hybrid approach that combines geometric and appearance features for training Deep Encoder-Decoder architectures to detect the traversability score in real urban contexts. The proposed approach has been tested with two Deep Learning architectures on a public dataset of outdoor driving scenarios. Thanks to our approach, we are able to reach high levels of accuracy in detecting the correct traversability score in environments of highly variable complexity. This demonstrates the effectiveness and robustness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信