ReCoM:多类型相互关联数据对象的增强聚类

Jidong Wang, Hua-Jun Zeng, Zheng Chen, Hongjun Lu, Li Tao, Wei-Ying Ma
{"title":"ReCoM:多类型相互关联数据对象的增强聚类","authors":"Jidong Wang, Hua-Jun Zeng, Zheng Chen, Hongjun Lu, Li Tao, Wei-Ying Ma","doi":"10.1145/860435.860486","DOIUrl":null,"url":null,"abstract":"Most existing clustering algorithms cluster highly related data objects such as Web pages and Web users separately. The interrelation among different types of data objects is either not considered, or represented by a static feature space and treated in the same ways as other attributes of the objects. In this paper, we propose a novel clustering approach for clustering multi-type interrelated data objects, ReCoM (Reinforcement Clustering of Multi-type Interrelated data objects). Under this approach, relationships among data objects are used to improve the cluster quality of interrelated data objects through an iterative reinforcement clustering process. At the same time, the link structure derived from relationships of the interrelated data objects is used to differentiate the importance of objects and the learned importance is also used in the clustering process to further improve the clustering results. Experimental results show that the proposed approach not only effectively overcomes the problem of data sparseness caused by the high dimensional relationship space but also significantly improves the clustering accuracy.","PeriodicalId":209809,"journal":{"name":"Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval","volume":"163 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"134","resultStr":"{\"title\":\"ReCoM: reinforcement clustering of multi-type interrelated data objects\",\"authors\":\"Jidong Wang, Hua-Jun Zeng, Zheng Chen, Hongjun Lu, Li Tao, Wei-Ying Ma\",\"doi\":\"10.1145/860435.860486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most existing clustering algorithms cluster highly related data objects such as Web pages and Web users separately. The interrelation among different types of data objects is either not considered, or represented by a static feature space and treated in the same ways as other attributes of the objects. In this paper, we propose a novel clustering approach for clustering multi-type interrelated data objects, ReCoM (Reinforcement Clustering of Multi-type Interrelated data objects). Under this approach, relationships among data objects are used to improve the cluster quality of interrelated data objects through an iterative reinforcement clustering process. At the same time, the link structure derived from relationships of the interrelated data objects is used to differentiate the importance of objects and the learned importance is also used in the clustering process to further improve the clustering results. Experimental results show that the proposed approach not only effectively overcomes the problem of data sparseness caused by the high dimensional relationship space but also significantly improves the clustering accuracy.\",\"PeriodicalId\":209809,\"journal\":{\"name\":\"Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval\",\"volume\":\"163 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"134\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/860435.860486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/860435.860486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 134

摘要

大多数现有的聚类算法将高度相关的数据对象(如Web页面和Web用户)分开聚类。不同类型的数据对象之间的相互关系要么不考虑,要么用静态特征空间表示,并以与对象的其他属性相同的方式处理。本文提出了一种新的多类型关联数据对象聚类方法ReCoM (Reinforcement clustering of multi-type correlation data objects)。该方法利用数据对象之间的关系,通过迭代强化聚类过程来提高相关数据对象的聚类质量。同时,利用相互关联的数据对象之间的关系衍生出的链接结构来区分对象的重要性,并在聚类过程中使用学习到的重要性来进一步提高聚类结果。实验结果表明,该方法不仅有效克服了高维关系空间导致的数据稀疏问题,而且显著提高了聚类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ReCoM: reinforcement clustering of multi-type interrelated data objects
Most existing clustering algorithms cluster highly related data objects such as Web pages and Web users separately. The interrelation among different types of data objects is either not considered, or represented by a static feature space and treated in the same ways as other attributes of the objects. In this paper, we propose a novel clustering approach for clustering multi-type interrelated data objects, ReCoM (Reinforcement Clustering of Multi-type Interrelated data objects). Under this approach, relationships among data objects are used to improve the cluster quality of interrelated data objects through an iterative reinforcement clustering process. At the same time, the link structure derived from relationships of the interrelated data objects is used to differentiate the importance of objects and the learned importance is also used in the clustering process to further improve the clustering results. Experimental results show that the proposed approach not only effectively overcomes the problem of data sparseness caused by the high dimensional relationship space but also significantly improves the clustering accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信