面向高效服装推荐的双向异构图哈希

Weili Guan, Xuemeng Song, Haoyu Zhang, Meng Liu, C. Yeh, Xiaojun Chang
{"title":"面向高效服装推荐的双向异构图哈希","authors":"Weili Guan, Xuemeng Song, Haoyu Zhang, Meng Liu, C. Yeh, Xiaojun Chang","doi":"10.1145/3503161.3548020","DOIUrl":null,"url":null,"abstract":"Personalized outfit recommendation, which aims to recommend the outfits to a given user according to his/her preference, has gained increasing research attention due to its economic value. Nevertheless, the majority of existing methods mainly focus on improving the recommendation effectiveness, while overlooking the recommendation efficiency. Inspired by this, we devise a novel bi-directional heterogeneous graph hashing scheme, called BiHGH, towards efficient personalized outfit recommendation. In particular, this scheme consists of three key components: heterogeneous graph node initialization, bi-directional sequential graph convolution, and hash code learning. We first unify four types of entities (i.e., users, outfits, items, and attributes) and their relations via a heterogeneous four-partite graph. To perform graph learning, we then creatively devise a bi-directional graph convolution algorithm to sequentially transfer knowledge via repeating upwards and downwards convolution, whereby we divide the four-partite graph into three subgraphs and each subgraph only involves two adjacent entity types. We ultimately adopt the bayesian personalized ranking loss for the user preference learning and design the dual similarity preserving regularization to prevent the information loss during hash learning. Extensive experiments on the benchmark dataset demonstrate the superiority of BiHGH.","PeriodicalId":412792,"journal":{"name":"Proceedings of the 30th ACM International Conference on Multimedia","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Bi-directional Heterogeneous Graph Hashing towards Efficient Outfit Recommendation\",\"authors\":\"Weili Guan, Xuemeng Song, Haoyu Zhang, Meng Liu, C. Yeh, Xiaojun Chang\",\"doi\":\"10.1145/3503161.3548020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Personalized outfit recommendation, which aims to recommend the outfits to a given user according to his/her preference, has gained increasing research attention due to its economic value. Nevertheless, the majority of existing methods mainly focus on improving the recommendation effectiveness, while overlooking the recommendation efficiency. Inspired by this, we devise a novel bi-directional heterogeneous graph hashing scheme, called BiHGH, towards efficient personalized outfit recommendation. In particular, this scheme consists of three key components: heterogeneous graph node initialization, bi-directional sequential graph convolution, and hash code learning. We first unify four types of entities (i.e., users, outfits, items, and attributes) and their relations via a heterogeneous four-partite graph. To perform graph learning, we then creatively devise a bi-directional graph convolution algorithm to sequentially transfer knowledge via repeating upwards and downwards convolution, whereby we divide the four-partite graph into three subgraphs and each subgraph only involves two adjacent entity types. We ultimately adopt the bayesian personalized ranking loss for the user preference learning and design the dual similarity preserving regularization to prevent the information loss during hash learning. Extensive experiments on the benchmark dataset demonstrate the superiority of BiHGH.\",\"PeriodicalId\":412792,\"journal\":{\"name\":\"Proceedings of the 30th ACM International Conference on Multimedia\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 30th ACM International Conference on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3503161.3548020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3503161.3548020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

个性化服装推荐,即根据特定用户的喜好向其推荐服装,由于其经济价值而受到越来越多的研究关注。然而,现有的大多数方法主要侧重于提高推荐的有效性,而忽略了推荐的效率。受此启发,我们设计了一种新的双向异构图哈希方案,称为BiHGH,以实现高效的个性化服装推荐。该方案由三个关键部分组成:异构图节点初始化、双向顺序图卷积和哈希码学习。我们首先通过一个异构的四部分图统一了四种类型的实体(即用户、装备、物品和属性)及其关系。为了进行图学习,我们创造性地设计了一种双向图卷积算法,通过重复向上和向下卷积来顺序传递知识,我们将四部图分为三个子图,每个子图只涉及两个相邻的实体类型。我们最终采用贝叶斯个性化排序损失进行用户偏好学习,并设计了双相似度保持正则化来防止哈希学习过程中的信息丢失。在基准数据集上的大量实验证明了BiHGH的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bi-directional Heterogeneous Graph Hashing towards Efficient Outfit Recommendation
Personalized outfit recommendation, which aims to recommend the outfits to a given user according to his/her preference, has gained increasing research attention due to its economic value. Nevertheless, the majority of existing methods mainly focus on improving the recommendation effectiveness, while overlooking the recommendation efficiency. Inspired by this, we devise a novel bi-directional heterogeneous graph hashing scheme, called BiHGH, towards efficient personalized outfit recommendation. In particular, this scheme consists of three key components: heterogeneous graph node initialization, bi-directional sequential graph convolution, and hash code learning. We first unify four types of entities (i.e., users, outfits, items, and attributes) and their relations via a heterogeneous four-partite graph. To perform graph learning, we then creatively devise a bi-directional graph convolution algorithm to sequentially transfer knowledge via repeating upwards and downwards convolution, whereby we divide the four-partite graph into three subgraphs and each subgraph only involves two adjacent entity types. We ultimately adopt the bayesian personalized ranking loss for the user preference learning and design the dual similarity preserving regularization to prevent the information loss during hash learning. Extensive experiments on the benchmark dataset demonstrate the superiority of BiHGH.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信