基于人工智能的微钻过程建模与优化

Gerardo Beruvides, F. Castaño, R. Haber, Ramón Quiza Sardiñas, M. R. Santana
{"title":"基于人工智能的微钻过程建模与优化","authors":"Gerardo Beruvides, F. Castaño, R. Haber, Ramón Quiza Sardiñas, M. R. Santana","doi":"10.1109/CIES.2014.7011830","DOIUrl":null,"url":null,"abstract":"This paper presents one strategy for modeling and optimization of a microdilling process. Experimental work has been carried out for measuring the thrust force for five different commonly used alloys, under several cutting conditions. An artificial neural network-based model was implemented for modelling the thrust force. Neural model showed a high goodness of fit and appropriate generalization capability. The optimization process was executed by considered two different and conflicting objectives: the unit machining time and the thrust force (based on the previously obtained model). A multiobjective genetic algorithm was used for solving the optimization problem and a set of non-dominated solutions was obtained. The Pareto's front representation was depicted and used for assisting the decision making process.","PeriodicalId":287779,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Artificial intelligence-based modelling and optimization of microdrilling processes\",\"authors\":\"Gerardo Beruvides, F. Castaño, R. Haber, Ramón Quiza Sardiñas, M. R. Santana\",\"doi\":\"10.1109/CIES.2014.7011830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents one strategy for modeling and optimization of a microdilling process. Experimental work has been carried out for measuring the thrust force for five different commonly used alloys, under several cutting conditions. An artificial neural network-based model was implemented for modelling the thrust force. Neural model showed a high goodness of fit and appropriate generalization capability. The optimization process was executed by considered two different and conflicting objectives: the unit machining time and the thrust force (based on the previously obtained model). A multiobjective genetic algorithm was used for solving the optimization problem and a set of non-dominated solutions was obtained. The Pareto's front representation was depicted and used for assisting the decision making process.\",\"PeriodicalId\":287779,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES)\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIES.2014.7011830\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIES.2014.7011830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种微钻过程建模与优化策略。对五种常用合金在不同切削条件下的推力进行了实验测量。建立了基于人工神经网络的推力模型。神经网络模型具有较高的拟合优度和良好的泛化能力。优化过程考虑了两个不同且相互冲突的目标:单位加工时间和推力(基于先前获得的模型)。采用多目标遗传算法求解优化问题,得到了一组非支配解。帕累托的正面表示被描绘并用于辅助决策过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial intelligence-based modelling and optimization of microdrilling processes
This paper presents one strategy for modeling and optimization of a microdilling process. Experimental work has been carried out for measuring the thrust force for five different commonly used alloys, under several cutting conditions. An artificial neural network-based model was implemented for modelling the thrust force. Neural model showed a high goodness of fit and appropriate generalization capability. The optimization process was executed by considered two different and conflicting objectives: the unit machining time and the thrust force (based on the previously obtained model). A multiobjective genetic algorithm was used for solving the optimization problem and a set of non-dominated solutions was obtained. The Pareto's front representation was depicted and used for assisting the decision making process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信