Gerardo Beruvides, F. Castaño, R. Haber, Ramón Quiza Sardiñas, M. R. Santana
{"title":"基于人工智能的微钻过程建模与优化","authors":"Gerardo Beruvides, F. Castaño, R. Haber, Ramón Quiza Sardiñas, M. R. Santana","doi":"10.1109/CIES.2014.7011830","DOIUrl":null,"url":null,"abstract":"This paper presents one strategy for modeling and optimization of a microdilling process. Experimental work has been carried out for measuring the thrust force for five different commonly used alloys, under several cutting conditions. An artificial neural network-based model was implemented for modelling the thrust force. Neural model showed a high goodness of fit and appropriate generalization capability. The optimization process was executed by considered two different and conflicting objectives: the unit machining time and the thrust force (based on the previously obtained model). A multiobjective genetic algorithm was used for solving the optimization problem and a set of non-dominated solutions was obtained. The Pareto's front representation was depicted and used for assisting the decision making process.","PeriodicalId":287779,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Artificial intelligence-based modelling and optimization of microdrilling processes\",\"authors\":\"Gerardo Beruvides, F. Castaño, R. Haber, Ramón Quiza Sardiñas, M. R. Santana\",\"doi\":\"10.1109/CIES.2014.7011830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents one strategy for modeling and optimization of a microdilling process. Experimental work has been carried out for measuring the thrust force for five different commonly used alloys, under several cutting conditions. An artificial neural network-based model was implemented for modelling the thrust force. Neural model showed a high goodness of fit and appropriate generalization capability. The optimization process was executed by considered two different and conflicting objectives: the unit machining time and the thrust force (based on the previously obtained model). A multiobjective genetic algorithm was used for solving the optimization problem and a set of non-dominated solutions was obtained. The Pareto's front representation was depicted and used for assisting the decision making process.\",\"PeriodicalId\":287779,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES)\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIES.2014.7011830\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIES.2014.7011830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Artificial intelligence-based modelling and optimization of microdrilling processes
This paper presents one strategy for modeling and optimization of a microdilling process. Experimental work has been carried out for measuring the thrust force for five different commonly used alloys, under several cutting conditions. An artificial neural network-based model was implemented for modelling the thrust force. Neural model showed a high goodness of fit and appropriate generalization capability. The optimization process was executed by considered two different and conflicting objectives: the unit machining time and the thrust force (based on the previously obtained model). A multiobjective genetic algorithm was used for solving the optimization problem and a set of non-dominated solutions was obtained. The Pareto's front representation was depicted and used for assisting the decision making process.