实时心律失常分类器

Himeshika Abayaratne, Shalindri Perera, Erandi De Silva, Pramadhi Atapattu, M. Wijesundara
{"title":"实时心律失常分类器","authors":"Himeshika Abayaratne, Shalindri Perera, Erandi De Silva, Pramadhi Atapattu, M. Wijesundara","doi":"10.1109/NITC48475.2019.9114464","DOIUrl":null,"url":null,"abstract":"Cardiovascular diseases (CVD) have increased drastically among Non-Communicable diseases, which have peaked over the past recent years. In 2018, around 17.9 million which is an estimated 31% of the people have died worldwide due to CVDs. A novel machine learning algorithm for continuous monitoring, identification and classification of cardiac arrhythmias from Electrocardiogram (ECG) data is presented here. The proposed solution has two stages where the first stage is a rule based cardiac abnormality identification which has an individual 97.55% ± 0.3% of accuracy (Acc) for a dataset of 705,000 and the second stage is a Neural Network (NN) based classification model which is trained and tested to identify 15 different classes recommended by ANSI/AAMI standard [1], and has 97.1% of individual accuracy for MIT-BIH Arrhythmia dataset [2] of 96265 beat samples. The combined real-time cardiac arrhythmia classifier is parallelized with CUDA in order to utilize the GPU and increase the execution speed by 4.86 times.","PeriodicalId":386923,"journal":{"name":"2019 National Information Technology Conference (NITC)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Real-Time Cardiac Arrhythmia Classifier\",\"authors\":\"Himeshika Abayaratne, Shalindri Perera, Erandi De Silva, Pramadhi Atapattu, M. Wijesundara\",\"doi\":\"10.1109/NITC48475.2019.9114464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cardiovascular diseases (CVD) have increased drastically among Non-Communicable diseases, which have peaked over the past recent years. In 2018, around 17.9 million which is an estimated 31% of the people have died worldwide due to CVDs. A novel machine learning algorithm for continuous monitoring, identification and classification of cardiac arrhythmias from Electrocardiogram (ECG) data is presented here. The proposed solution has two stages where the first stage is a rule based cardiac abnormality identification which has an individual 97.55% ± 0.3% of accuracy (Acc) for a dataset of 705,000 and the second stage is a Neural Network (NN) based classification model which is trained and tested to identify 15 different classes recommended by ANSI/AAMI standard [1], and has 97.1% of individual accuracy for MIT-BIH Arrhythmia dataset [2] of 96265 beat samples. The combined real-time cardiac arrhythmia classifier is parallelized with CUDA in order to utilize the GPU and increase the execution speed by 4.86 times.\",\"PeriodicalId\":386923,\"journal\":{\"name\":\"2019 National Information Technology Conference (NITC)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 National Information Technology Conference (NITC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NITC48475.2019.9114464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 National Information Technology Conference (NITC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NITC48475.2019.9114464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在非传染性疾病中,心血管疾病急剧增加,近年来达到高峰。2018年,全球约有1790万人死于心血管疾病,估计占总人数的31%。本文提出了一种新的机器学习算法,用于从心电图(ECG)数据中连续监测、识别和分类心律失常。提出的解决方案分为两个阶段,第一阶段是基于规则的心脏异常识别,对705,000个数据集具有97.55%±0.3%的准确率(Acc);第二阶段是基于神经网络(NN)的分类模型,该模型经过训练和测试,可识别ANSI/AAMI标准推荐的15种不同类别[1],并对麻省理工学院- bih心律失常数据集[2]具有97.1%的个体准确率96265个节拍样本。结合实时心律失常分类器与CUDA并行化,利用GPU,执行速度提高4.86倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Real-Time Cardiac Arrhythmia Classifier
Cardiovascular diseases (CVD) have increased drastically among Non-Communicable diseases, which have peaked over the past recent years. In 2018, around 17.9 million which is an estimated 31% of the people have died worldwide due to CVDs. A novel machine learning algorithm for continuous monitoring, identification and classification of cardiac arrhythmias from Electrocardiogram (ECG) data is presented here. The proposed solution has two stages where the first stage is a rule based cardiac abnormality identification which has an individual 97.55% ± 0.3% of accuracy (Acc) for a dataset of 705,000 and the second stage is a Neural Network (NN) based classification model which is trained and tested to identify 15 different classes recommended by ANSI/AAMI standard [1], and has 97.1% of individual accuracy for MIT-BIH Arrhythmia dataset [2] of 96265 beat samples. The combined real-time cardiac arrhythmia classifier is parallelized with CUDA in order to utilize the GPU and increase the execution speed by 4.86 times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信