Moosa Yahyazadeh, Sze Yiu Chau, Li Li, Man Hong Hue, Joyanta Debnath, Sheung Chiu Ip, Chun Ngai Li, Md. Endadul Hoque, Omar Chowdhury
{"title":"莫斐斯:带着(PKCS)一个去见神谕","authors":"Moosa Yahyazadeh, Sze Yiu Chau, Li Li, Man Hong Hue, Joyanta Debnath, Sheung Chiu Ip, Chun Ngai Li, Md. Endadul Hoque, Omar Chowdhury","doi":"10.1145/3460120.3485382","DOIUrl":null,"url":null,"abstract":"This paper focuses on developing an automatic, black-box testing approach called Morpheus to check the non-compliance of libraries implementing PKCS#1-v1.5 signature verification with the PKCS#1-v1.5 standard. Non-compliance can not only make implementations vulnerable to Bleichenbacher-style RSA signature forgery attacks but also can induce interoperability issues. For checking non-compliance, Morpheus adaptively generates interesting test cases and then takes advantage of an oracle, a formally proven correct implementation of PKCS#1-v1.5 signature standard, to detect non-compliance in an implementation under test. We have used Morpheus to test 45 implementations of PKCS#1-v1.5 signature verification and discovered that 6 of them are susceptible to variants of the Bleichenbacher-style low public exponent RSA signature forgery attack, 1 implementation has a buffer overflow, 33 implementations have incompatibility issues, and 8 implementations have minor leniencies. Our findings have been responsibly disclosed and positively acknowledged by the developers.","PeriodicalId":135883,"journal":{"name":"Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Morpheus: Bringing The (PKCS) One To Meet the Oracle\",\"authors\":\"Moosa Yahyazadeh, Sze Yiu Chau, Li Li, Man Hong Hue, Joyanta Debnath, Sheung Chiu Ip, Chun Ngai Li, Md. Endadul Hoque, Omar Chowdhury\",\"doi\":\"10.1145/3460120.3485382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on developing an automatic, black-box testing approach called Morpheus to check the non-compliance of libraries implementing PKCS#1-v1.5 signature verification with the PKCS#1-v1.5 standard. Non-compliance can not only make implementations vulnerable to Bleichenbacher-style RSA signature forgery attacks but also can induce interoperability issues. For checking non-compliance, Morpheus adaptively generates interesting test cases and then takes advantage of an oracle, a formally proven correct implementation of PKCS#1-v1.5 signature standard, to detect non-compliance in an implementation under test. We have used Morpheus to test 45 implementations of PKCS#1-v1.5 signature verification and discovered that 6 of them are susceptible to variants of the Bleichenbacher-style low public exponent RSA signature forgery attack, 1 implementation has a buffer overflow, 33 implementations have incompatibility issues, and 8 implementations have minor leniencies. Our findings have been responsibly disclosed and positively acknowledged by the developers.\",\"PeriodicalId\":135883,\"journal\":{\"name\":\"Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3460120.3485382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3460120.3485382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Morpheus: Bringing The (PKCS) One To Meet the Oracle
This paper focuses on developing an automatic, black-box testing approach called Morpheus to check the non-compliance of libraries implementing PKCS#1-v1.5 signature verification with the PKCS#1-v1.5 standard. Non-compliance can not only make implementations vulnerable to Bleichenbacher-style RSA signature forgery attacks but also can induce interoperability issues. For checking non-compliance, Morpheus adaptively generates interesting test cases and then takes advantage of an oracle, a formally proven correct implementation of PKCS#1-v1.5 signature standard, to detect non-compliance in an implementation under test. We have used Morpheus to test 45 implementations of PKCS#1-v1.5 signature verification and discovered that 6 of them are susceptible to variants of the Bleichenbacher-style low public exponent RSA signature forgery attack, 1 implementation has a buffer overflow, 33 implementations have incompatibility issues, and 8 implementations have minor leniencies. Our findings have been responsibly disclosed and positively acknowledged by the developers.