2个转移矩阵的商奇异值分解和方向方面

J. David, B. De Moor
{"title":"2个转移矩阵的商奇异值分解和方向方面","authors":"J. David, B. De Moor","doi":"10.1109/CMPEUR.1992.218414","DOIUrl":null,"url":null,"abstract":"Directional aspects of multiple-input-multiple-output systems relative to one another are studied. The quotient singular value decomposition (QSVD), a generalization of the SVD is used. The definition and some properties of the QSVD are stated. The concepts of the indicator ellipsoid and the oriented energy plot allow for a better visualization of the directional gain. The oriented signal-to-signal ratio, is introduced. It is shown that it can be computed by using the QSVD. Some applications in control are outlined.<<ETX>>","PeriodicalId":390273,"journal":{"name":"CompEuro 1992 Proceedings Computer Systems and Software Engineering","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The quotient SVD and directional aspects of 2 transfer matrices\",\"authors\":\"J. David, B. De Moor\",\"doi\":\"10.1109/CMPEUR.1992.218414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Directional aspects of multiple-input-multiple-output systems relative to one another are studied. The quotient singular value decomposition (QSVD), a generalization of the SVD is used. The definition and some properties of the QSVD are stated. The concepts of the indicator ellipsoid and the oriented energy plot allow for a better visualization of the directional gain. The oriented signal-to-signal ratio, is introduced. It is shown that it can be computed by using the QSVD. Some applications in control are outlined.<<ETX>>\",\"PeriodicalId\":390273,\"journal\":{\"name\":\"CompEuro 1992 Proceedings Computer Systems and Software Engineering\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CompEuro 1992 Proceedings Computer Systems and Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CMPEUR.1992.218414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CompEuro 1992 Proceedings Computer Systems and Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMPEUR.1992.218414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了多输入多输出系统相互间的方向性问题。采用商奇异值分解(QSVD),对奇异值分解进行了推广。给出了QSVD的定义和一些性质。指示器椭球和定向能量图的概念允许更好地可视化定向增益。介绍了定向信信比。结果表明,利用QSVD可以计算出它。概述了控制中的一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The quotient SVD and directional aspects of 2 transfer matrices
Directional aspects of multiple-input-multiple-output systems relative to one another are studied. The quotient singular value decomposition (QSVD), a generalization of the SVD is used. The definition and some properties of the QSVD are stated. The concepts of the indicator ellipsoid and the oriented energy plot allow for a better visualization of the directional gain. The oriented signal-to-signal ratio, is introduced. It is shown that it can be computed by using the QSVD. Some applications in control are outlined.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信