Marcelo Nery, R. Santos, W. Santos, Vítor Lourenço, M. Moreno
{"title":"用知识工程应对数字农业挑战","authors":"Marcelo Nery, R. Santos, W. Santos, Vítor Lourenço, M. Moreno","doi":"10.1109/AI4I.2018.8665708","DOIUrl":null,"url":null,"abstract":"Knowledge Engineering is key to enable knowledge extraction, representation and reasoning, leading to better business insights and decisions. Current advances in machine learning and new trends in AI are bringing a plethora of algorithms capable of performing advanced pattern recognition and data classification. The ability to link, to organize and to query the outputs of these algorithms as well as the ability to handle huge amounts of data and its multiple sources is crucial to maximize the potential of such advances, specially over large datasets. This paper presents challenges in the context of digital agriculture and our position in moving forward with these capabilities whilst using knowledge engineering techniques.","PeriodicalId":133657,"journal":{"name":"2018 First International Conference on Artificial Intelligence for Industries (AI4I)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Facing Digital Agriculture Challenges with Knowledge Engineering\",\"authors\":\"Marcelo Nery, R. Santos, W. Santos, Vítor Lourenço, M. Moreno\",\"doi\":\"10.1109/AI4I.2018.8665708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowledge Engineering is key to enable knowledge extraction, representation and reasoning, leading to better business insights and decisions. Current advances in machine learning and new trends in AI are bringing a plethora of algorithms capable of performing advanced pattern recognition and data classification. The ability to link, to organize and to query the outputs of these algorithms as well as the ability to handle huge amounts of data and its multiple sources is crucial to maximize the potential of such advances, specially over large datasets. This paper presents challenges in the context of digital agriculture and our position in moving forward with these capabilities whilst using knowledge engineering techniques.\",\"PeriodicalId\":133657,\"journal\":{\"name\":\"2018 First International Conference on Artificial Intelligence for Industries (AI4I)\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 First International Conference on Artificial Intelligence for Industries (AI4I)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AI4I.2018.8665708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 First International Conference on Artificial Intelligence for Industries (AI4I)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AI4I.2018.8665708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Facing Digital Agriculture Challenges with Knowledge Engineering
Knowledge Engineering is key to enable knowledge extraction, representation and reasoning, leading to better business insights and decisions. Current advances in machine learning and new trends in AI are bringing a plethora of algorithms capable of performing advanced pattern recognition and data classification. The ability to link, to organize and to query the outputs of these algorithms as well as the ability to handle huge amounts of data and its multiple sources is crucial to maximize the potential of such advances, specially over large datasets. This paper presents challenges in the context of digital agriculture and our position in moving forward with these capabilities whilst using knowledge engineering techniques.