机器人关节空间的任务约束运动规划

Mike Stilman
{"title":"机器人关节空间的任务约束运动规划","authors":"Mike Stilman","doi":"10.1109/IROS.2007.4399305","DOIUrl":null,"url":null,"abstract":"We explore global randomized joint space path planning for articulated robots that are subject to task space constraints. This paper describes a representation of constrained motion for joint space planners and develops two simple and efficient methods for constrained sampling of joint configurations: Tangent Space Sampling (TS) and First-Order Retraction (FR). Constrained joint space planning is important for many real world problems involving redundant manipulators. On the one hand, tasks are designated in work space coordinates: rotating doors about fixed axes, sliding drawers along fixed trajectories or holding objects level during transport. On the other, joint space planning gives alternative paths that use redundant degrees of freedom to avoid obstacles or satisfy additional goals while performing a task. In simulation, we demonstrate that our methods are faster and significantly more invariant to problem/algorithm parameters than existing techniques.","PeriodicalId":227148,"journal":{"name":"2007 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"194","resultStr":"{\"title\":\"Task constrained motion planning in robot joint space\",\"authors\":\"Mike Stilman\",\"doi\":\"10.1109/IROS.2007.4399305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore global randomized joint space path planning for articulated robots that are subject to task space constraints. This paper describes a representation of constrained motion for joint space planners and develops two simple and efficient methods for constrained sampling of joint configurations: Tangent Space Sampling (TS) and First-Order Retraction (FR). Constrained joint space planning is important for many real world problems involving redundant manipulators. On the one hand, tasks are designated in work space coordinates: rotating doors about fixed axes, sliding drawers along fixed trajectories or holding objects level during transport. On the other, joint space planning gives alternative paths that use redundant degrees of freedom to avoid obstacles or satisfy additional goals while performing a task. In simulation, we demonstrate that our methods are faster and significantly more invariant to problem/algorithm parameters than existing techniques.\",\"PeriodicalId\":227148,\"journal\":{\"name\":\"2007 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"194\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2007.4399305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2007.4399305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 194

摘要

我们研究了受任务空间约束的关节机器人的全局随机关节空间路径规划。本文描述了关节空间规划者的约束运动表示,并提出了两种简单有效的关节构型约束采样方法:切线空间采样(TS)和一阶回缩(FR)。约束关节空间规划对于许多涉及冗余机械臂的实际问题是非常重要的。一方面,在工作空间坐标中指定任务:围绕固定轴旋转的门,沿着固定轨迹滑动的抽屉或在运输过程中保持物体水平。另一方面,联合空间规划提供了备选路径,使用冗余自由度来避免障碍物或在执行任务时满足额外的目标。在模拟中,我们证明了我们的方法比现有技术更快,并且对问题/算法参数的不变性明显更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Task constrained motion planning in robot joint space
We explore global randomized joint space path planning for articulated robots that are subject to task space constraints. This paper describes a representation of constrained motion for joint space planners and develops two simple and efficient methods for constrained sampling of joint configurations: Tangent Space Sampling (TS) and First-Order Retraction (FR). Constrained joint space planning is important for many real world problems involving redundant manipulators. On the one hand, tasks are designated in work space coordinates: rotating doors about fixed axes, sliding drawers along fixed trajectories or holding objects level during transport. On the other, joint space planning gives alternative paths that use redundant degrees of freedom to avoid obstacles or satisfy additional goals while performing a task. In simulation, we demonstrate that our methods are faster and significantly more invariant to problem/algorithm parameters than existing techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信