利用熵和SURF对视频进行场景分割

Junaid Baber, N. Afzulpurkar, Maheen Bakhtyar
{"title":"利用熵和SURF对视频进行场景分割","authors":"Junaid Baber, N. Afzulpurkar, Maheen Bakhtyar","doi":"10.1109/ICET.2011.6048496","DOIUrl":null,"url":null,"abstract":"In this paper we present a framework for video segmentation into scenes. Segmenting videos into scenes is the basic step for video analysis, efficient video indexing and content-based video retrieval. In our framework we used frame entropy and SURF descriptor to find shot boundaries from the videos. We extracted key frames from each shot and segmented the video into semantic scenes by key frame matching. The proposed algorithm gave promising results when applied to different genres of videos and dramas.","PeriodicalId":167049,"journal":{"name":"2011 7th International Conference on Emerging Technologies","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Video segmentation into scenes using entropy and SURF\",\"authors\":\"Junaid Baber, N. Afzulpurkar, Maheen Bakhtyar\",\"doi\":\"10.1109/ICET.2011.6048496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a framework for video segmentation into scenes. Segmenting videos into scenes is the basic step for video analysis, efficient video indexing and content-based video retrieval. In our framework we used frame entropy and SURF descriptor to find shot boundaries from the videos. We extracted key frames from each shot and segmented the video into semantic scenes by key frame matching. The proposed algorithm gave promising results when applied to different genres of videos and dramas.\",\"PeriodicalId\":167049,\"journal\":{\"name\":\"2011 7th International Conference on Emerging Technologies\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 7th International Conference on Emerging Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICET.2011.6048496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 7th International Conference on Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICET.2011.6048496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文提出了一种基于场景的视频分割框架。将视频分割成场景是视频分析、高效视频索引和基于内容的视频检索的基本步骤。在我们的框架中,我们使用帧熵和SURF描述符从视频中找到镜头边界。我们从每个镜头中提取关键帧,并通过关键帧匹配将视频分割成语义场景。当应用于不同类型的视频和电视剧时,所提出的算法取得了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Video segmentation into scenes using entropy and SURF
In this paper we present a framework for video segmentation into scenes. Segmenting videos into scenes is the basic step for video analysis, efficient video indexing and content-based video retrieval. In our framework we used frame entropy and SURF descriptor to find shot boundaries from the videos. We extracted key frames from each shot and segmented the video into semantic scenes by key frame matching. The proposed algorithm gave promising results when applied to different genres of videos and dramas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信