D. Mandl, P. Roth, T. Langlotz, Christoph Ebner, Shohei Mori, S. Zollmann, Peter Mohr, Denis Kalkofen
{"title":"神经相机:学习相机特性的连贯混合现实渲染","authors":"D. Mandl, P. Roth, T. Langlotz, Christoph Ebner, Shohei Mori, S. Zollmann, Peter Mohr, Denis Kalkofen","doi":"10.1109/ismar52148.2021.00068","DOIUrl":null,"url":null,"abstract":"Coherent rendering is important for generating plausible Mixed Reality presentations of virtual objects within a user’s real-world environment. Besides photo-realistic rendering and correct lighting, visual coherence requires simulating the imaging system that is used to capture the real environment. While existing approaches either focus on a specific camera or a specific component of the imaging system, we introduce Neural Cameras, the first approach that jointly simulates all major components of an arbitrary modern camera using neural networks. Our system allows for adding new cameras to the framework by learning the visual properties from a database of images that has been captured using the physical camera. We present qualitative and quantitative results and discuss future direction for research that emerge from using Neural Cameras.","PeriodicalId":395413,"journal":{"name":"2021 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Neural Cameras: Learning Camera Characteristics for Coherent Mixed Reality Rendering\",\"authors\":\"D. Mandl, P. Roth, T. Langlotz, Christoph Ebner, Shohei Mori, S. Zollmann, Peter Mohr, Denis Kalkofen\",\"doi\":\"10.1109/ismar52148.2021.00068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coherent rendering is important for generating plausible Mixed Reality presentations of virtual objects within a user’s real-world environment. Besides photo-realistic rendering and correct lighting, visual coherence requires simulating the imaging system that is used to capture the real environment. While existing approaches either focus on a specific camera or a specific component of the imaging system, we introduce Neural Cameras, the first approach that jointly simulates all major components of an arbitrary modern camera using neural networks. Our system allows for adding new cameras to the framework by learning the visual properties from a database of images that has been captured using the physical camera. We present qualitative and quantitative results and discuss future direction for research that emerge from using Neural Cameras.\",\"PeriodicalId\":395413,\"journal\":{\"name\":\"2021 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)\",\"volume\":\"139 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ismar52148.2021.00068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ismar52148.2021.00068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Neural Cameras: Learning Camera Characteristics for Coherent Mixed Reality Rendering
Coherent rendering is important for generating plausible Mixed Reality presentations of virtual objects within a user’s real-world environment. Besides photo-realistic rendering and correct lighting, visual coherence requires simulating the imaging system that is used to capture the real environment. While existing approaches either focus on a specific camera or a specific component of the imaging system, we introduce Neural Cameras, the first approach that jointly simulates all major components of an arbitrary modern camera using neural networks. Our system allows for adding new cameras to the framework by learning the visual properties from a database of images that has been captured using the physical camera. We present qualitative and quantitative results and discuss future direction for research that emerge from using Neural Cameras.