神经相机:学习相机特性的连贯混合现实渲染

D. Mandl, P. Roth, T. Langlotz, Christoph Ebner, Shohei Mori, S. Zollmann, Peter Mohr, Denis Kalkofen
{"title":"神经相机:学习相机特性的连贯混合现实渲染","authors":"D. Mandl, P. Roth, T. Langlotz, Christoph Ebner, Shohei Mori, S. Zollmann, Peter Mohr, Denis Kalkofen","doi":"10.1109/ismar52148.2021.00068","DOIUrl":null,"url":null,"abstract":"Coherent rendering is important for generating plausible Mixed Reality presentations of virtual objects within a user’s real-world environment. Besides photo-realistic rendering and correct lighting, visual coherence requires simulating the imaging system that is used to capture the real environment. While existing approaches either focus on a specific camera or a specific component of the imaging system, we introduce Neural Cameras, the first approach that jointly simulates all major components of an arbitrary modern camera using neural networks. Our system allows for adding new cameras to the framework by learning the visual properties from a database of images that has been captured using the physical camera. We present qualitative and quantitative results and discuss future direction for research that emerge from using Neural Cameras.","PeriodicalId":395413,"journal":{"name":"2021 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Neural Cameras: Learning Camera Characteristics for Coherent Mixed Reality Rendering\",\"authors\":\"D. Mandl, P. Roth, T. Langlotz, Christoph Ebner, Shohei Mori, S. Zollmann, Peter Mohr, Denis Kalkofen\",\"doi\":\"10.1109/ismar52148.2021.00068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coherent rendering is important for generating plausible Mixed Reality presentations of virtual objects within a user’s real-world environment. Besides photo-realistic rendering and correct lighting, visual coherence requires simulating the imaging system that is used to capture the real environment. While existing approaches either focus on a specific camera or a specific component of the imaging system, we introduce Neural Cameras, the first approach that jointly simulates all major components of an arbitrary modern camera using neural networks. Our system allows for adding new cameras to the framework by learning the visual properties from a database of images that has been captured using the physical camera. We present qualitative and quantitative results and discuss future direction for research that emerge from using Neural Cameras.\",\"PeriodicalId\":395413,\"journal\":{\"name\":\"2021 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)\",\"volume\":\"139 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ismar52148.2021.00068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ismar52148.2021.00068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

连贯渲染对于在用户的真实世界环境中生成虚拟对象的混合现实表示非常重要。除了逼真的渲染和正确的照明,视觉一致性还需要模拟用于捕捉真实环境的成像系统。虽然现有的方法要么专注于特定的相机或成像系统的特定组件,但我们引入了神经相机,这是第一种使用神经网络联合模拟任意现代相机的所有主要组件的方法。我们的系统允许通过从使用物理相机捕获的图像数据库中学习视觉属性来向框架添加新的相机。我们提出了定性和定量的结果,并讨论了未来的研究方向,从使用神经相机出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Cameras: Learning Camera Characteristics for Coherent Mixed Reality Rendering
Coherent rendering is important for generating plausible Mixed Reality presentations of virtual objects within a user’s real-world environment. Besides photo-realistic rendering and correct lighting, visual coherence requires simulating the imaging system that is used to capture the real environment. While existing approaches either focus on a specific camera or a specific component of the imaging system, we introduce Neural Cameras, the first approach that jointly simulates all major components of an arbitrary modern camera using neural networks. Our system allows for adding new cameras to the framework by learning the visual properties from a database of images that has been captured using the physical camera. We present qualitative and quantitative results and discuss future direction for research that emerge from using Neural Cameras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信