基于并行多目标粒子群优化模型的土壤采样网络设计

Dianfeng Liu, Yaolin Liu, Yanfang Liu, Xiang Zhao
{"title":"基于并行多目标粒子群优化模型的土壤采样网络设计","authors":"Dianfeng Liu, Yaolin Liu, Yanfang Liu, Xiang Zhao","doi":"10.1109/Geoinformatics.2012.6270337","DOIUrl":null,"url":null,"abstract":"Optimization of soil sampling network is a complex optimization problem, which must reconcile a series of conflicts such as survey budget, sampling efficiency and sampling barriers, etc.. High computational cost of this problem motivated the applications of parallel computation algorithms. Our study proposes a parallelized multi-objective particle swarm optimization model (PMOPSO), which combines minimum mean kriging variance and minimum survey budget as the objectives. The model was applied to optimize soil sampling network of Hengshan County in loess hilly area in China. The performance of the PMOPSO model was compared to that of sequential MOPSO. The results indicate that the PMOPSO model can improve the computational efficiency and fitness values of the objectives significantly at the expense of the convergence rate.","PeriodicalId":259976,"journal":{"name":"2012 20th International Conference on Geoinformatics","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A parallelized multi-objective particle swarm optimization model to design soil sampling network\",\"authors\":\"Dianfeng Liu, Yaolin Liu, Yanfang Liu, Xiang Zhao\",\"doi\":\"10.1109/Geoinformatics.2012.6270337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimization of soil sampling network is a complex optimization problem, which must reconcile a series of conflicts such as survey budget, sampling efficiency and sampling barriers, etc.. High computational cost of this problem motivated the applications of parallel computation algorithms. Our study proposes a parallelized multi-objective particle swarm optimization model (PMOPSO), which combines minimum mean kriging variance and minimum survey budget as the objectives. The model was applied to optimize soil sampling network of Hengshan County in loess hilly area in China. The performance of the PMOPSO model was compared to that of sequential MOPSO. The results indicate that the PMOPSO model can improve the computational efficiency and fitness values of the objectives significantly at the expense of the convergence rate.\",\"PeriodicalId\":259976,\"journal\":{\"name\":\"2012 20th International Conference on Geoinformatics\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 20th International Conference on Geoinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Geoinformatics.2012.6270337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 20th International Conference on Geoinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Geoinformatics.2012.6270337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

土壤采样网络优化是一个复杂的优化问题,必须协调调查预算、采样效率和采样障碍等一系列冲突。该问题的高计算成本促使并行计算算法的应用。本文提出了以最小平均克里格方差和最小调查预算为目标的并行化多目标粒子群优化模型(ppmso)。将该模型应用于黄土丘陵区衡山县土壤采样网络的优化。将PMOPSO模型的性能与顺序MOPSO模型进行了比较。结果表明,ppmso模型能显著提高目标的计算效率和适应度值,但会降低目标的收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A parallelized multi-objective particle swarm optimization model to design soil sampling network
Optimization of soil sampling network is a complex optimization problem, which must reconcile a series of conflicts such as survey budget, sampling efficiency and sampling barriers, etc.. High computational cost of this problem motivated the applications of parallel computation algorithms. Our study proposes a parallelized multi-objective particle swarm optimization model (PMOPSO), which combines minimum mean kriging variance and minimum survey budget as the objectives. The model was applied to optimize soil sampling network of Hengshan County in loess hilly area in China. The performance of the PMOPSO model was compared to that of sequential MOPSO. The results indicate that the PMOPSO model can improve the computational efficiency and fitness values of the objectives significantly at the expense of the convergence rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信