HIV/AIDS -结核联合感染模型的后向分岔和地方性均衡

M. O. Okongo
{"title":"HIV/AIDS -结核联合感染模型的后向分岔和地方性均衡","authors":"M. O. Okongo","doi":"10.7176/mtm/9-4-05","DOIUrl":null,"url":null,"abstract":"This study proposes a model that describes the dynamics of HIV/AIDS Co infection with Tuberculosis (TB) using systems of nonlinear ordinary differential equations. A characteristic of nonlinear oscillating systems is the sudden change in behavior which occurs as a parameter passes through a critical value called a bifurcation point. A bifurcation point is a point in parameter space where the number of equilibrium points, or their stability properties, or both, change. The results of the study shows that the Co infection model  has a diseases-free equilibrium (DFE) which is globally asymptotically unstable implying that the stable  endemic state co-exists with the DFE. Numerical simulations are carried out to illustrate the b ackward bifurcation phenomenon. Keywords: Backward bifurcation,  Equilibria, Co-infection, Stability . DOI : 10.7176/MTM/9-4-05 Publication date : April 30 th 2019.","PeriodicalId":394772,"journal":{"name":"Mathematical Theory and Modeling","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Backward Bifurcation and the Endemic Equilibrium for an HIV/AIDS - Tuberculosis Co infection Model\",\"authors\":\"M. O. Okongo\",\"doi\":\"10.7176/mtm/9-4-05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes a model that describes the dynamics of HIV/AIDS Co infection with Tuberculosis (TB) using systems of nonlinear ordinary differential equations. A characteristic of nonlinear oscillating systems is the sudden change in behavior which occurs as a parameter passes through a critical value called a bifurcation point. A bifurcation point is a point in parameter space where the number of equilibrium points, or their stability properties, or both, change. The results of the study shows that the Co infection model  has a diseases-free equilibrium (DFE) which is globally asymptotically unstable implying that the stable  endemic state co-exists with the DFE. Numerical simulations are carried out to illustrate the b ackward bifurcation phenomenon. Keywords: Backward bifurcation,  Equilibria, Co-infection, Stability . DOI : 10.7176/MTM/9-4-05 Publication date : April 30 th 2019.\",\"PeriodicalId\":394772,\"journal\":{\"name\":\"Mathematical Theory and Modeling\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Theory and Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7176/mtm/9-4-05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Theory and Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7176/mtm/9-4-05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一个用非线性常微分方程系统描述HIV/AIDS Co感染结核病(TB)动力学的模型。非线性振荡系统的一个特点是,当一个参数通过一个称为分岔点的临界值时,其行为会发生突然变化。分岔点是参数空间中平衡点数量或稳定性或两者同时变化的点。研究结果表明,Co感染模型具有全局渐近不稳定的无病平衡(DFE),这意味着稳定的地方病状态与DFE共存。数值模拟说明了后向分岔现象。关键词:后向分岔,均衡,共感染,稳定性。出版日期:2019年4月30日。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Backward Bifurcation and the Endemic Equilibrium for an HIV/AIDS - Tuberculosis Co infection Model
This study proposes a model that describes the dynamics of HIV/AIDS Co infection with Tuberculosis (TB) using systems of nonlinear ordinary differential equations. A characteristic of nonlinear oscillating systems is the sudden change in behavior which occurs as a parameter passes through a critical value called a bifurcation point. A bifurcation point is a point in parameter space where the number of equilibrium points, or their stability properties, or both, change. The results of the study shows that the Co infection model  has a diseases-free equilibrium (DFE) which is globally asymptotically unstable implying that the stable  endemic state co-exists with the DFE. Numerical simulations are carried out to illustrate the b ackward bifurcation phenomenon. Keywords: Backward bifurcation,  Equilibria, Co-infection, Stability . DOI : 10.7176/MTM/9-4-05 Publication date : April 30 th 2019.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信