(1+1)维适形费雪方程的一种新的解析方法

Gulnur Yel, M. Kayhan, A. Ciancio
{"title":"(1+1)维适形费雪方程的一种新的解析方法","authors":"Gulnur Yel, M. Kayhan, A. Ciancio","doi":"10.53391/mmnsa.2022.017","DOIUrl":null,"url":null,"abstract":"In this paper, we use an effective method which is the rational sine-Gordon expansion method to present new wave simulations of a governing model. We consider the (1+1)-dimensional conformable Fisher equation which is used to describe the interactive relation between diffusion and reaction. Various types of solutions such as multi-soliton, kink, and anti-kink wave soliton solutions are obtained. Finally, the physical behaviours of the obtained solutions are shown by 3D, 2D, and contour surfaces.","PeriodicalId":210715,"journal":{"name":"Mathematical Modelling and Numerical Simulation with Applications","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A new analytical approach to the (1+1)-dimensional conformable Fisher equation\",\"authors\":\"Gulnur Yel, M. Kayhan, A. Ciancio\",\"doi\":\"10.53391/mmnsa.2022.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we use an effective method which is the rational sine-Gordon expansion method to present new wave simulations of a governing model. We consider the (1+1)-dimensional conformable Fisher equation which is used to describe the interactive relation between diffusion and reaction. Various types of solutions such as multi-soliton, kink, and anti-kink wave soliton solutions are obtained. Finally, the physical behaviours of the obtained solutions are shown by 3D, 2D, and contour surfaces.\",\"PeriodicalId\":210715,\"journal\":{\"name\":\"Mathematical Modelling and Numerical Simulation with Applications\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modelling and Numerical Simulation with Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53391/mmnsa.2022.017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling and Numerical Simulation with Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53391/mmnsa.2022.017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文采用一种有效的方法——有理正弦戈登展开法,对控制模型进行了新的波浪模拟。考虑用于描述扩散与反应相互作用关系的(1+1)维适形Fisher方程。得到了各种类型的解,如多孤子、扭结波和反扭结波孤子解。最后,通过三维、二维和等高线面来显示得到的解的物理行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new analytical approach to the (1+1)-dimensional conformable Fisher equation
In this paper, we use an effective method which is the rational sine-Gordon expansion method to present new wave simulations of a governing model. We consider the (1+1)-dimensional conformable Fisher equation which is used to describe the interactive relation between diffusion and reaction. Various types of solutions such as multi-soliton, kink, and anti-kink wave soliton solutions are obtained. Finally, the physical behaviours of the obtained solutions are shown by 3D, 2D, and contour surfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信