VL-BERT+:在可恨的多模态模因中检测保护组

Piush Aggarwal, Michelle Espranita Liman, Darina Gold, Torsten Zesch
{"title":"VL-BERT+:在可恨的多模态模因中检测保护组","authors":"Piush Aggarwal, Michelle Espranita Liman, Darina Gold, Torsten Zesch","doi":"10.18653/v1/2021.woah-1.22","DOIUrl":null,"url":null,"abstract":"This paper describes our submission (winning solution for Task A) to the Shared Task on Hateful Meme Detection at WOAH 2021. We build our system on top of a state-of-the-art system for binary hateful meme classification that already uses image tags such as race, gender, and web entities. We add further metadata such as emotions and experiment with data augmentation techniques, as hateful instances are underrepresented in the data set.","PeriodicalId":166161,"journal":{"name":"Proceedings of the 5th Workshop on Online Abuse and Harms (WOAH 2021)","volume":"209 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"VL-BERT+: Detecting Protected Groups in Hateful Multimodal Memes\",\"authors\":\"Piush Aggarwal, Michelle Espranita Liman, Darina Gold, Torsten Zesch\",\"doi\":\"10.18653/v1/2021.woah-1.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes our submission (winning solution for Task A) to the Shared Task on Hateful Meme Detection at WOAH 2021. We build our system on top of a state-of-the-art system for binary hateful meme classification that already uses image tags such as race, gender, and web entities. We add further metadata such as emotions and experiment with data augmentation techniques, as hateful instances are underrepresented in the data set.\",\"PeriodicalId\":166161,\"journal\":{\"name\":\"Proceedings of the 5th Workshop on Online Abuse and Harms (WOAH 2021)\",\"volume\":\"209 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th Workshop on Online Abuse and Harms (WOAH 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2021.woah-1.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th Workshop on Online Abuse and Harms (WOAH 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2021.woah-1.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文描述了我们在WOAH 2021上提交的关于仇恨模因检测的共享任务(任务A的获奖解决方案)。我们的系统建立在一个最先进的二元仇恨模因分类系统之上,该系统已经使用了种族、性别和网络实体等图像标签。我们添加了进一步的元数据,如情绪和实验数据增强技术,因为可恶的实例在数据集中的代表性不足。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
VL-BERT+: Detecting Protected Groups in Hateful Multimodal Memes
This paper describes our submission (winning solution for Task A) to the Shared Task on Hateful Meme Detection at WOAH 2021. We build our system on top of a state-of-the-art system for binary hateful meme classification that already uses image tags such as race, gender, and web entities. We add further metadata such as emotions and experiment with data augmentation techniques, as hateful instances are underrepresented in the data set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信