{"title":"半参数多项式选择模型的反事实评价","authors":"K. Chiong, Yu-Wei Hsieh, M. Shum","doi":"10.2139/ssrn.3006737","DOIUrl":null,"url":null,"abstract":"We propose using cyclic monotonicity, a convex-analytic property of the random utility choice model, to derive bounds on counterfactual choice probabilities in semiparametric multinomial choice models. These bounds are useful for typical counterfactual exercises in aggregate discrete-choice demand models. In our semiparametric approach, we do not specify the parametric distribution for the utility shocks, thus accommodating a wide variety of substitution patterns among alternatives. Computation of the counterfactual bounds is a tractable linear programming problem. We illustrate our approach in a series of Monte Carlo simulations and an empirical application using scanner data.","PeriodicalId":264857,"journal":{"name":"ERN: Semiparametric & Nonparametric Methods (Topic)","volume":"6 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Counterfactual Evaluation in Semiparametric Multinomial Choice Models\",\"authors\":\"K. Chiong, Yu-Wei Hsieh, M. Shum\",\"doi\":\"10.2139/ssrn.3006737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose using cyclic monotonicity, a convex-analytic property of the random utility choice model, to derive bounds on counterfactual choice probabilities in semiparametric multinomial choice models. These bounds are useful for typical counterfactual exercises in aggregate discrete-choice demand models. In our semiparametric approach, we do not specify the parametric distribution for the utility shocks, thus accommodating a wide variety of substitution patterns among alternatives. Computation of the counterfactual bounds is a tractable linear programming problem. We illustrate our approach in a series of Monte Carlo simulations and an empirical application using scanner data.\",\"PeriodicalId\":264857,\"journal\":{\"name\":\"ERN: Semiparametric & Nonparametric Methods (Topic)\",\"volume\":\"6 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Semiparametric & Nonparametric Methods (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3006737\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Semiparametric & Nonparametric Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3006737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Counterfactual Evaluation in Semiparametric Multinomial Choice Models
We propose using cyclic monotonicity, a convex-analytic property of the random utility choice model, to derive bounds on counterfactual choice probabilities in semiparametric multinomial choice models. These bounds are useful for typical counterfactual exercises in aggregate discrete-choice demand models. In our semiparametric approach, we do not specify the parametric distribution for the utility shocks, thus accommodating a wide variety of substitution patterns among alternatives. Computation of the counterfactual bounds is a tractable linear programming problem. We illustrate our approach in a series of Monte Carlo simulations and an empirical application using scanner data.