3.不断思考

Richard A. Earl
{"title":"3.不断思考","authors":"Richard A. Earl","doi":"10.1093/actrade/9780198832683.003.0003","DOIUrl":null,"url":null,"abstract":"Many topologists might choose to describe their subject as the study of continuity. There are continuous and discontinuous functions in our everyday routines. ‘Thinking continuously’ aims to provide a more rigorous sense of what continuity entails for real-valued functions of a real variable. It focuses on functions having a single numerical input and a single numerical output. The properties of continuous functions are considered and the boundedness theorem and intermediate value theorem are also explained.","PeriodicalId":169406,"journal":{"name":"Topology: A Very Short Introduction","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3. Thinking continuously\",\"authors\":\"Richard A. Earl\",\"doi\":\"10.1093/actrade/9780198832683.003.0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many topologists might choose to describe their subject as the study of continuity. There are continuous and discontinuous functions in our everyday routines. ‘Thinking continuously’ aims to provide a more rigorous sense of what continuity entails for real-valued functions of a real variable. It focuses on functions having a single numerical input and a single numerical output. The properties of continuous functions are considered and the boundedness theorem and intermediate value theorem are also explained.\",\"PeriodicalId\":169406,\"journal\":{\"name\":\"Topology: A Very Short Introduction\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology: A Very Short Introduction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/actrade/9780198832683.003.0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology: A Very Short Introduction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/actrade/9780198832683.003.0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多拓扑学家可能会选择将他们的学科描述为对连续性的研究。在我们的日常生活中有连续的和不连续的函数。“连续思考”旨在为实变量的实值函数的连续性提供更严格的意义。它着重于具有单个数值输入和单个数值输出的函数。讨论了连续函数的性质,并给出了有界性定理和中间值定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3. Thinking continuously
Many topologists might choose to describe their subject as the study of continuity. There are continuous and discontinuous functions in our everyday routines. ‘Thinking continuously’ aims to provide a more rigorous sense of what continuity entails for real-valued functions of a real variable. It focuses on functions having a single numerical input and a single numerical output. The properties of continuous functions are considered and the boundedness theorem and intermediate value theorem are also explained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信