基于复小波变换的视频人体动作识别方法

M. Khare, Jeonghwan Gwak, M. Jeon
{"title":"基于复小波变换的视频人体动作识别方法","authors":"M. Khare, Jeonghwan Gwak, M. Jeon","doi":"10.1109/ICCAIS.2017.8217568","DOIUrl":null,"url":null,"abstract":"Human action recognition is a challenging research in computer vision applications because variety of human actions can be misclassified as some other action types. In this paper, we proposed a method for human action recognition based on dual tree complex wavelet transform (DTCWT). DTCWT has better edge representation and approximate shift-invariant properties compared to real-valued wavelet transforms. Experiments are carried out on different standard action datasets including KTH and MSR. We have performed the proposed method on multiple levels of DTCWT. The proposed method is compared with other state-of-the-art methods in terms of different quantitative performance measures, and the results of the proposed method are found to have better recognition accuracy.","PeriodicalId":410094,"journal":{"name":"2017 International Conference on Control, Automation and Information Sciences (ICCAIS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Complex wavelet transform-based approach for human action recognition in video\",\"authors\":\"M. Khare, Jeonghwan Gwak, M. Jeon\",\"doi\":\"10.1109/ICCAIS.2017.8217568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human action recognition is a challenging research in computer vision applications because variety of human actions can be misclassified as some other action types. In this paper, we proposed a method for human action recognition based on dual tree complex wavelet transform (DTCWT). DTCWT has better edge representation and approximate shift-invariant properties compared to real-valued wavelet transforms. Experiments are carried out on different standard action datasets including KTH and MSR. We have performed the proposed method on multiple levels of DTCWT. The proposed method is compared with other state-of-the-art methods in terms of different quantitative performance measures, and the results of the proposed method are found to have better recognition accuracy.\",\"PeriodicalId\":410094,\"journal\":{\"name\":\"2017 International Conference on Control, Automation and Information Sciences (ICCAIS)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Control, Automation and Information Sciences (ICCAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAIS.2017.8217568\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Control, Automation and Information Sciences (ICCAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIS.2017.8217568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

人体动作识别在计算机视觉应用中是一个具有挑战性的研究,因为各种各样的人体动作可能被错误地分类为其他一些动作类型。提出了一种基于对偶树复小波变换(DTCWT)的人体动作识别方法。与实值小波变换相比,DTCWT具有更好的边缘表示和近似平移不变性。在KTH和MSR等不同的标准动作数据集上进行了实验。我们已经在多个层次的DTCWT上执行了所提出的方法。在不同的定量性能指标方面,将所提方法与其他最新方法进行了比较,结果表明所提方法具有更好的识别精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complex wavelet transform-based approach for human action recognition in video
Human action recognition is a challenging research in computer vision applications because variety of human actions can be misclassified as some other action types. In this paper, we proposed a method for human action recognition based on dual tree complex wavelet transform (DTCWT). DTCWT has better edge representation and approximate shift-invariant properties compared to real-valued wavelet transforms. Experiments are carried out on different standard action datasets including KTH and MSR. We have performed the proposed method on multiple levels of DTCWT. The proposed method is compared with other state-of-the-art methods in terms of different quantitative performance measures, and the results of the proposed method are found to have better recognition accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信