{"title":"用于5G应用的小型化超材料单元电池","authors":"Imen Sansa, A. Nasri, H. Zairi","doi":"10.1109/mms48040.2019.9157283","DOIUrl":null,"url":null,"abstract":"In this paper, a novel miniaturized metamaterial unit cell for 5G applications was proposed. The new structure is composed of an outer ring with four slots having capacitive loads and of two intersecting arms placed in the interior of the outer ring. This unit achieves a bandwidth of 52.32% compared to 18.46% for the conventional Split Ring Resonator structure. A set of unit cells are periodically associated on a substrate, above a bowtie antenna to improve their performances. The results show that this miniaturized structure offers some interesting features performances, such as wide bandwidth, which makes the design suitable for 5G systems.","PeriodicalId":373813,"journal":{"name":"2019 IEEE 19th Mediterranean Microwave Symposium (MMS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A miniaturized metamaterial unit cell for 5G applications\",\"authors\":\"Imen Sansa, A. Nasri, H. Zairi\",\"doi\":\"10.1109/mms48040.2019.9157283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel miniaturized metamaterial unit cell for 5G applications was proposed. The new structure is composed of an outer ring with four slots having capacitive loads and of two intersecting arms placed in the interior of the outer ring. This unit achieves a bandwidth of 52.32% compared to 18.46% for the conventional Split Ring Resonator structure. A set of unit cells are periodically associated on a substrate, above a bowtie antenna to improve their performances. The results show that this miniaturized structure offers some interesting features performances, such as wide bandwidth, which makes the design suitable for 5G systems.\",\"PeriodicalId\":373813,\"journal\":{\"name\":\"2019 IEEE 19th Mediterranean Microwave Symposium (MMS)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 19th Mediterranean Microwave Symposium (MMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/mms48040.2019.9157283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 19th Mediterranean Microwave Symposium (MMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mms48040.2019.9157283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A miniaturized metamaterial unit cell for 5G applications
In this paper, a novel miniaturized metamaterial unit cell for 5G applications was proposed. The new structure is composed of an outer ring with four slots having capacitive loads and of two intersecting arms placed in the interior of the outer ring. This unit achieves a bandwidth of 52.32% compared to 18.46% for the conventional Split Ring Resonator structure. A set of unit cells are periodically associated on a substrate, above a bowtie antenna to improve their performances. The results show that this miniaturized structure offers some interesting features performances, such as wide bandwidth, which makes the design suitable for 5G systems.