基于GCN学习的药物-靶标相互作用预测

Xiaodan Wang, Jihong Wang, Z. Wang
{"title":"基于GCN学习的药物-靶标相互作用预测","authors":"Xiaodan Wang, Jihong Wang, Z. Wang","doi":"10.1109/ICBCB52223.2021.9459231","DOIUrl":null,"url":null,"abstract":"In recent years, the use of deep learning methods for drug-target interaction (DTI) prediction has become the mainstream research direction. Drugs, targets, and other related biological and chemical properties have constructed a very complex network structure. How to effectively extract network features and predict target has become a big challenge. Graph Convolutional Neural Network (GCN) is one of the effective deep learning methods for complex networks. It extends the convolution operation from traditional European space to non-Euclidean space, and can simultaneously perform end-to-end node attribute information and structural information. End-to-end learning, its core idea is to learn a function mapping, through which nodes in the mapping graph can aggregate their own features and its neighbor features to generate a new representation of the node. In this study, we introduce the GCN link prediction method decagon for DTI prediction research. The experimental data comes from the DTI-net model. By combining the drug-drug interaction relationship matrix, the target-target interaction relationship matrix and the drug-target interaction relationship matrix provided by DTI-net, the drug characteristics and target characteristics are expressed as the attribute characteristics of the network nodes, thereby obtaining DTI Heterogeneous Network. In order to improve the ability to predict the drug-target relationship, this article has done a lot of tuning experiments in parameter selection and optimization strategies, and analyzed and compared the prediction results. The best predicted AUC is 0.919, and the best AUPR is 0.922. In terms of traditional drug-target prediction methods, the GCN method can effectively extract the features contained in heterogeneous networks, which proves the feasibility of this method in predicting drug-target interactions.","PeriodicalId":178168,"journal":{"name":"2021 IEEE 9th International Conference on Bioinformatics and Computational Biology (ICBCB)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Drug-Target Interaction Prediction Based on GCN Learning\",\"authors\":\"Xiaodan Wang, Jihong Wang, Z. Wang\",\"doi\":\"10.1109/ICBCB52223.2021.9459231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, the use of deep learning methods for drug-target interaction (DTI) prediction has become the mainstream research direction. Drugs, targets, and other related biological and chemical properties have constructed a very complex network structure. How to effectively extract network features and predict target has become a big challenge. Graph Convolutional Neural Network (GCN) is one of the effective deep learning methods for complex networks. It extends the convolution operation from traditional European space to non-Euclidean space, and can simultaneously perform end-to-end node attribute information and structural information. End-to-end learning, its core idea is to learn a function mapping, through which nodes in the mapping graph can aggregate their own features and its neighbor features to generate a new representation of the node. In this study, we introduce the GCN link prediction method decagon for DTI prediction research. The experimental data comes from the DTI-net model. By combining the drug-drug interaction relationship matrix, the target-target interaction relationship matrix and the drug-target interaction relationship matrix provided by DTI-net, the drug characteristics and target characteristics are expressed as the attribute characteristics of the network nodes, thereby obtaining DTI Heterogeneous Network. In order to improve the ability to predict the drug-target relationship, this article has done a lot of tuning experiments in parameter selection and optimization strategies, and analyzed and compared the prediction results. The best predicted AUC is 0.919, and the best AUPR is 0.922. In terms of traditional drug-target prediction methods, the GCN method can effectively extract the features contained in heterogeneous networks, which proves the feasibility of this method in predicting drug-target interactions.\",\"PeriodicalId\":178168,\"journal\":{\"name\":\"2021 IEEE 9th International Conference on Bioinformatics and Computational Biology (ICBCB)\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 9th International Conference on Bioinformatics and Computational Biology (ICBCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBCB52223.2021.9459231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 9th International Conference on Bioinformatics and Computational Biology (ICBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBCB52223.2021.9459231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

近年来,利用深度学习方法进行药物-靶标相互作用(DTI)预测已成为主流研究方向。药物、靶标以及其他相关的生物和化学性质构成了一个非常复杂的网络结构。如何有效地提取网络特征并预测目标已成为一个巨大的挑战。图卷积神经网络(GCN)是一种有效的复杂网络深度学习方法。它将卷积运算从传统的欧氏空间扩展到非欧氏空间,可以同时执行端到端的节点属性信息和结构信息。端到端学习,其核心思想是学习一个函数映射,通过映射图中的节点可以聚合自己的特征和它的邻居特征,从而生成一个新的节点表示。在本研究中,我们引入GCN链路预测方法decagon进行DTI预测研究。实验数据来源于DTI-net模型。结合DTI-net提供的药物-药物相互作用关系矩阵、靶点-靶点相互作用关系矩阵和药物-靶点相互作用关系矩阵,将药物特性和靶点特性表示为网络节点的属性特征,从而得到DTI异构网络。为了提高预测药靶关系的能力,本文在参数选择和优化策略方面做了大量的调优实验,并对预测结果进行了分析和比较。最佳预测AUC为0.919,最佳AUPR为0.922。与传统的药物-靶标预测方法相比,GCN方法可以有效地提取异构网络中包含的特征,证明了该方法预测药物-靶标相互作用的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Drug-Target Interaction Prediction Based on GCN Learning
In recent years, the use of deep learning methods for drug-target interaction (DTI) prediction has become the mainstream research direction. Drugs, targets, and other related biological and chemical properties have constructed a very complex network structure. How to effectively extract network features and predict target has become a big challenge. Graph Convolutional Neural Network (GCN) is one of the effective deep learning methods for complex networks. It extends the convolution operation from traditional European space to non-Euclidean space, and can simultaneously perform end-to-end node attribute information and structural information. End-to-end learning, its core idea is to learn a function mapping, through which nodes in the mapping graph can aggregate their own features and its neighbor features to generate a new representation of the node. In this study, we introduce the GCN link prediction method decagon for DTI prediction research. The experimental data comes from the DTI-net model. By combining the drug-drug interaction relationship matrix, the target-target interaction relationship matrix and the drug-target interaction relationship matrix provided by DTI-net, the drug characteristics and target characteristics are expressed as the attribute characteristics of the network nodes, thereby obtaining DTI Heterogeneous Network. In order to improve the ability to predict the drug-target relationship, this article has done a lot of tuning experiments in parameter selection and optimization strategies, and analyzed and compared the prediction results. The best predicted AUC is 0.919, and the best AUPR is 0.922. In terms of traditional drug-target prediction methods, the GCN method can effectively extract the features contained in heterogeneous networks, which proves the feasibility of this method in predicting drug-target interactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信