纯量子方程理论的终止和合流项改写系统

Robert W. McGrail, Thuy Trang Nguyen, Thanh Thuy Trang Tran, A. Tripathi
{"title":"纯量子方程理论的终止和合流项改写系统","authors":"Robert W. McGrail, Thuy Trang Nguyen, Thanh Thuy Trang Tran, A. Tripathi","doi":"10.1109/SYNASC.2018.00035","DOIUrl":null,"url":null,"abstract":"This article presents a term rewriting system for the first-order equational theory of quandles that is both terminating and confluent. As a consequence, it has unique normal forms and so encodes a decision procedure for quandle identities. However, the problem of computing a normal form for this term rewriting system is, in worst case, EXP hard.","PeriodicalId":273805,"journal":{"name":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Terminating and Confluent Term Rewriting System for the Pure Equational Theory of Quandles\",\"authors\":\"Robert W. McGrail, Thuy Trang Nguyen, Thanh Thuy Trang Tran, A. Tripathi\",\"doi\":\"10.1109/SYNASC.2018.00035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a term rewriting system for the first-order equational theory of quandles that is both terminating and confluent. As a consequence, it has unique normal forms and so encodes a decision procedure for quandle identities. However, the problem of computing a normal form for this term rewriting system is, in worst case, EXP hard.\",\"PeriodicalId\":273805,\"journal\":{\"name\":\"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2018.00035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2018.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文给出了一阶量子方程理论的终止性和合流性的项改写系统。因此,它具有唯一的范式,并因此编码了一个双重身份的决策过程。然而,在最坏的情况下,计算这个术语重写系统的标准形式的问题是EXP困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Terminating and Confluent Term Rewriting System for the Pure Equational Theory of Quandles
This article presents a term rewriting system for the first-order equational theory of quandles that is both terminating and confluent. As a consequence, it has unique normal forms and so encodes a decision procedure for quandle identities. However, the problem of computing a normal form for this term rewriting system is, in worst case, EXP hard.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信