复杂网络中的连通性:度量、推理和优化

Chen Chen
{"title":"复杂网络中的连通性:度量、推理和优化","authors":"Chen Chen","doi":"10.1145/3159652.3170460","DOIUrl":null,"url":null,"abstract":"Networks are ubiquitous in many high impact domains. Among the various aspects of network studies, connectivity is the one that plays important role in many applications (e.g., information dissemination, robustness analysis, community detection, etc.). The diversified applications have spurred numerous connectivity measures. Accordingly, ad-hoc connectivity optimization methods are designed for each measure, making it hard to model and control the connectivity of the network in a uniformed framework. On the other hand, it is often impossible to maintain an accurate structure of the network due to network dynamics and noise in real applications, which would affect the accuracy of connectivity measures and the effectiveness of corresponding connectivity optimization methods. In this work, we aim to address the challenges on network connectivity by (1)unifying a wide range of classic network connectivity measures into one uniform model; (2)proposing effective approaches to infer connectivity measures and network structures from dynamic and incomplete input data, and (3) providing a general framework to optimize the connectivity measures in the network.","PeriodicalId":401247,"journal":{"name":"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Connectivity in Complex Networks: Measures, Inference and Optimization\",\"authors\":\"Chen Chen\",\"doi\":\"10.1145/3159652.3170460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Networks are ubiquitous in many high impact domains. Among the various aspects of network studies, connectivity is the one that plays important role in many applications (e.g., information dissemination, robustness analysis, community detection, etc.). The diversified applications have spurred numerous connectivity measures. Accordingly, ad-hoc connectivity optimization methods are designed for each measure, making it hard to model and control the connectivity of the network in a uniformed framework. On the other hand, it is often impossible to maintain an accurate structure of the network due to network dynamics and noise in real applications, which would affect the accuracy of connectivity measures and the effectiveness of corresponding connectivity optimization methods. In this work, we aim to address the challenges on network connectivity by (1)unifying a wide range of classic network connectivity measures into one uniform model; (2)proposing effective approaches to infer connectivity measures and network structures from dynamic and incomplete input data, and (3) providing a general framework to optimize the connectivity measures in the network.\",\"PeriodicalId\":401247,\"journal\":{\"name\":\"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3159652.3170460\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3159652.3170460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

网络在许多高影响力的领域中无处不在。在网络研究的各个方面中,连通性在许多应用(如信息传播、鲁棒性分析、社区检测等)中起着重要作用。多样化的应用刺激了大量的连接措施。因此,针对每一项措施都设计了自组织连接优化方法,难以在统一的框架下对网络的连通性进行建模和控制。另一方面,在实际应用中,由于网络动态和噪声的影响,往往无法保持准确的网络结构,从而影响连通性度量的准确性和相应的连通性优化方法的有效性。在这项工作中,我们的目标是通过(1)将广泛的经典网络连接措施统一到一个统一的模型中来解决网络连接方面的挑战;(2)提出了从动态和不完整的输入数据中推断连通性测度和网络结构的有效方法;(3)提供了优化网络连通性测度的总体框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Connectivity in Complex Networks: Measures, Inference and Optimization
Networks are ubiquitous in many high impact domains. Among the various aspects of network studies, connectivity is the one that plays important role in many applications (e.g., information dissemination, robustness analysis, community detection, etc.). The diversified applications have spurred numerous connectivity measures. Accordingly, ad-hoc connectivity optimization methods are designed for each measure, making it hard to model and control the connectivity of the network in a uniformed framework. On the other hand, it is often impossible to maintain an accurate structure of the network due to network dynamics and noise in real applications, which would affect the accuracy of connectivity measures and the effectiveness of corresponding connectivity optimization methods. In this work, we aim to address the challenges on network connectivity by (1)unifying a wide range of classic network connectivity measures into one uniform model; (2)proposing effective approaches to infer connectivity measures and network structures from dynamic and incomplete input data, and (3) providing a general framework to optimize the connectivity measures in the network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信