对图像传感器的攻击

M. Wolf, Kruttidipta Samal
{"title":"对图像传感器的攻击","authors":"M. Wolf, Kruttidipta Samal","doi":"10.1145/3508352.3561097","DOIUrl":null,"url":null,"abstract":"This paper provides a taxonomy of security vulnerabilities of smart image sensor systems. Image sensors form an important class of sensors. Many image sensors include computation units that can provide traditional algorithms such as image or video compression along with machine learning tasks such as classification. Some attacks rely on the physics and optics of imaging. Other attacks take advantage of the complex logic and software required to perform imaging systems.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attacks on Image Sensors\",\"authors\":\"M. Wolf, Kruttidipta Samal\",\"doi\":\"10.1145/3508352.3561097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides a taxonomy of security vulnerabilities of smart image sensor systems. Image sensors form an important class of sensors. Many image sensors include computation units that can provide traditional algorithms such as image or video compression along with machine learning tasks such as classification. Some attacks rely on the physics and optics of imaging. Other attacks take advantage of the complex logic and software required to perform imaging systems.\",\"PeriodicalId\":270592,\"journal\":{\"name\":\"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3508352.3561097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508352.3561097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文对智能图像传感器系统的安全漏洞进行了分类。图像传感器是一类重要的传感器。许多图像传感器包括可以提供传统算法(如图像或视频压缩)以及机器学习任务(如分类)的计算单元。有些攻击依赖于物理和光学成像。其他攻击利用了执行成像系统所需的复杂逻辑和软件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Attacks on Image Sensors
This paper provides a taxonomy of security vulnerabilities of smart image sensor systems. Image sensors form an important class of sensors. Many image sensors include computation units that can provide traditional algorithms such as image or video compression along with machine learning tasks such as classification. Some attacks rely on the physics and optics of imaging. Other attacks take advantage of the complex logic and software required to perform imaging systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信