{"title":"基于张量法的动态异构信息网络中多类型社区发现","authors":"Jibing Wu, Qun Zhang, Lianfei Yu, Wubin Ma, Yahui Wu, S. Deng, Hongbin Huang","doi":"10.1109/APWCONCSE.2017.00019","DOIUrl":null,"url":null,"abstract":"Community discovery in a dynamic heterogeneous information network is a challenging topic and quite more difficult than that in a traditional static homogeneous information network. Community in heterogeneous information network, named multi-typed community, contains multiple types of dynamic objects and links, which brings three challenges. Firstly, the multi-typed communities are heterogeneous. Secondly, The communities are constantly changing along time. Finally, the network schemas for different heterogeneous information networks are various. To overcome these challenges, we propose a multi-typed community discovery method for dynamic heterogeneous information networks through tensor method without the restriction of network schema. A tensor decomposition framework is designed to model the multi-typed community and address the community evolution. Experimental result on a real-world dataset demonstrates the efficiency of our framework.","PeriodicalId":215519,"journal":{"name":"2017 4th Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE)","volume":"78 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-typed Community Discovery in Dynamic Heterogeneous Information Networks through Tensor Method\",\"authors\":\"Jibing Wu, Qun Zhang, Lianfei Yu, Wubin Ma, Yahui Wu, S. Deng, Hongbin Huang\",\"doi\":\"10.1109/APWCONCSE.2017.00019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Community discovery in a dynamic heterogeneous information network is a challenging topic and quite more difficult than that in a traditional static homogeneous information network. Community in heterogeneous information network, named multi-typed community, contains multiple types of dynamic objects and links, which brings three challenges. Firstly, the multi-typed communities are heterogeneous. Secondly, The communities are constantly changing along time. Finally, the network schemas for different heterogeneous information networks are various. To overcome these challenges, we propose a multi-typed community discovery method for dynamic heterogeneous information networks through tensor method without the restriction of network schema. A tensor decomposition framework is designed to model the multi-typed community and address the community evolution. Experimental result on a real-world dataset demonstrates the efficiency of our framework.\",\"PeriodicalId\":215519,\"journal\":{\"name\":\"2017 4th Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE)\",\"volume\":\"78 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 4th Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APWCONCSE.2017.00019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 4th Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APWCONCSE.2017.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-typed Community Discovery in Dynamic Heterogeneous Information Networks through Tensor Method
Community discovery in a dynamic heterogeneous information network is a challenging topic and quite more difficult than that in a traditional static homogeneous information network. Community in heterogeneous information network, named multi-typed community, contains multiple types of dynamic objects and links, which brings three challenges. Firstly, the multi-typed communities are heterogeneous. Secondly, The communities are constantly changing along time. Finally, the network schemas for different heterogeneous information networks are various. To overcome these challenges, we propose a multi-typed community discovery method for dynamic heterogeneous information networks through tensor method without the restriction of network schema. A tensor decomposition framework is designed to model the multi-typed community and address the community evolution. Experimental result on a real-world dataset demonstrates the efficiency of our framework.