结合nl均值和局部阈值分割的LCD图形元素定位方法

Xiaohui Wang, J. Tan
{"title":"结合nl均值和局部阈值分割的LCD图形元素定位方法","authors":"Xiaohui Wang, J. Tan","doi":"10.1109/ISCTIS58954.2023.10213011","DOIUrl":null,"url":null,"abstract":"Accurate positioning of screen primitives is crucial in the machine vision-based automatic detection of intelligent water meter LCD screens. Detecting edge details of the LCD screen using the A component of the LAB color space improves the accuracy of LCD screen area positioning. This approach reduces background interference from Gaussian noise, non-uniform lighting, specular reflection, and local highlights. This study proposes a technique that combines NL-means and Sauvola local threshold segmentation methods to locate LCD screen areas and graphics elements. The experimental results indicate that this technique satisfies the defect detection criteria for smart water meter LCD screens set by the enterprise. The LCD screen detection tool extracted a smart water meter LCD screen image with 98.4% accuracy in LCD screen element positioning. Compared to the median filter method, this represents a significant improvement, and the combination with the maximum between-class variance method further increases accuracy by 2.7%.","PeriodicalId":334790,"journal":{"name":"2023 3rd International Symposium on Computer Technology and Information Science (ISCTIS)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LCD Graphic Element Location Method Combining NL-means and Local Threshold Segmentation\",\"authors\":\"Xiaohui Wang, J. Tan\",\"doi\":\"10.1109/ISCTIS58954.2023.10213011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate positioning of screen primitives is crucial in the machine vision-based automatic detection of intelligent water meter LCD screens. Detecting edge details of the LCD screen using the A component of the LAB color space improves the accuracy of LCD screen area positioning. This approach reduces background interference from Gaussian noise, non-uniform lighting, specular reflection, and local highlights. This study proposes a technique that combines NL-means and Sauvola local threshold segmentation methods to locate LCD screen areas and graphics elements. The experimental results indicate that this technique satisfies the defect detection criteria for smart water meter LCD screens set by the enterprise. The LCD screen detection tool extracted a smart water meter LCD screen image with 98.4% accuracy in LCD screen element positioning. Compared to the median filter method, this represents a significant improvement, and the combination with the maximum between-class variance method further increases accuracy by 2.7%.\",\"PeriodicalId\":334790,\"journal\":{\"name\":\"2023 3rd International Symposium on Computer Technology and Information Science (ISCTIS)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 3rd International Symposium on Computer Technology and Information Science (ISCTIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCTIS58954.2023.10213011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 3rd International Symposium on Computer Technology and Information Science (ISCTIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCTIS58954.2023.10213011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在基于机器视觉的智能水表液晶屏自动检测中,屏幕原语的准确定位至关重要。利用LAB色彩空间的A分量检测LCD屏幕边缘细节,提高了LCD屏幕区域定位的精度。这种方法减少了来自高斯噪声、非均匀照明、镜面反射和局部高光的背景干扰。本研究提出了一种结合NL-means和Sauvola局部阈值分割方法的LCD屏幕区域和图形元素定位技术。实验结果表明,该技术满足企业制定的智能水表液晶屏缺陷检测标准。该液晶屏检测工具提取了智能水表的液晶屏图像,在液晶屏元件定位中准确率高达98.4%。与中值滤波方法相比,这是一个显著的改进,并且与最大类间方差方法结合进一步提高了2.7%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LCD Graphic Element Location Method Combining NL-means and Local Threshold Segmentation
Accurate positioning of screen primitives is crucial in the machine vision-based automatic detection of intelligent water meter LCD screens. Detecting edge details of the LCD screen using the A component of the LAB color space improves the accuracy of LCD screen area positioning. This approach reduces background interference from Gaussian noise, non-uniform lighting, specular reflection, and local highlights. This study proposes a technique that combines NL-means and Sauvola local threshold segmentation methods to locate LCD screen areas and graphics elements. The experimental results indicate that this technique satisfies the defect detection criteria for smart water meter LCD screens set by the enterprise. The LCD screen detection tool extracted a smart water meter LCD screen image with 98.4% accuracy in LCD screen element positioning. Compared to the median filter method, this represents a significant improvement, and the combination with the maximum between-class variance method further increases accuracy by 2.7%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信