{"title":"基于自适应采样的一致性视觉词挖掘","authors":"Pierre Letessier, Olivier Buisson, A. Joly","doi":"10.1145/1991996.1992045","DOIUrl":null,"url":null,"abstract":"State-of-the-art large-scale object retrieval systems usually combine efficient Bag-of-Words indexing models with a spatial verification re-ranking stage to improve query performance. In this paper we propose to directly discover spatially verified visual words as a batch process. Contrary to previous related methods based on feature sets hashing or clustering, we suggest not trading recall for efficiency by sticking on an accurate two-stage matching strategy. The problem then rather becomes a sampling issue: how to effectively and efficiently select relevant query regions while minimizing the number of tentative probes? We therefore introduce an adaptive weighted sampling scheme, starting with some prior distribution and iteratively converging to unvisited regions. Interestingly, the proposed paradigm is generalizable to any input prior distribution, including specific visual concept detectors or efficient hashing-based methods. We show in the experiments that the proposed method allows to discover highly interpretable visual words while providing excellent recall and image representativity.","PeriodicalId":390933,"journal":{"name":"Proceedings of the 1st ACM International Conference on Multimedia Retrieval","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Consistent visual words mining with adaptive sampling\",\"authors\":\"Pierre Letessier, Olivier Buisson, A. Joly\",\"doi\":\"10.1145/1991996.1992045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"State-of-the-art large-scale object retrieval systems usually combine efficient Bag-of-Words indexing models with a spatial verification re-ranking stage to improve query performance. In this paper we propose to directly discover spatially verified visual words as a batch process. Contrary to previous related methods based on feature sets hashing or clustering, we suggest not trading recall for efficiency by sticking on an accurate two-stage matching strategy. The problem then rather becomes a sampling issue: how to effectively and efficiently select relevant query regions while minimizing the number of tentative probes? We therefore introduce an adaptive weighted sampling scheme, starting with some prior distribution and iteratively converging to unvisited regions. Interestingly, the proposed paradigm is generalizable to any input prior distribution, including specific visual concept detectors or efficient hashing-based methods. We show in the experiments that the proposed method allows to discover highly interpretable visual words while providing excellent recall and image representativity.\",\"PeriodicalId\":390933,\"journal\":{\"name\":\"Proceedings of the 1st ACM International Conference on Multimedia Retrieval\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st ACM International Conference on Multimedia Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1991996.1992045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st ACM International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1991996.1992045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Consistent visual words mining with adaptive sampling
State-of-the-art large-scale object retrieval systems usually combine efficient Bag-of-Words indexing models with a spatial verification re-ranking stage to improve query performance. In this paper we propose to directly discover spatially verified visual words as a batch process. Contrary to previous related methods based on feature sets hashing or clustering, we suggest not trading recall for efficiency by sticking on an accurate two-stage matching strategy. The problem then rather becomes a sampling issue: how to effectively and efficiently select relevant query regions while minimizing the number of tentative probes? We therefore introduce an adaptive weighted sampling scheme, starting with some prior distribution and iteratively converging to unvisited regions. Interestingly, the proposed paradigm is generalizable to any input prior distribution, including specific visual concept detectors or efficient hashing-based methods. We show in the experiments that the proposed method allows to discover highly interpretable visual words while providing excellent recall and image representativity.