基于对称遍历矩阵求幂问题的零知识识别方案

Huawei Huang, Yunyun Qu, Lunzhi Deng
{"title":"基于对称遍历矩阵求幂问题的零知识识别方案","authors":"Huawei Huang, Yunyun Qu, Lunzhi Deng","doi":"10.1145/3058060.3058084","DOIUrl":null,"url":null,"abstract":"Symmetry ergodic matrices exponentiation (SEME) problem is to find x, given CxMDx, where C and D are the companion matrices of primitive polynomials and M is an invertible matrix over finite field. This paper proposes a new zero-knowledge identification scheme based on SEME problem. It is perfect zero-knowledge for honest verifiers. The scheme could provide a candidate cryptographic primitive in post quantum cryptography. Due to its simplicity and naturalness, low-memory, low-computation costs, the proposed scheme is suitable for using in computationally limited devices for identification such as smart cards.","PeriodicalId":152599,"journal":{"name":"International Conference on Cryptography, Security and Privacy","volume":"6 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zero-Knowledge Identification Scheme Based on Symmetry Ergodic Matrices Exponentiation Problem\",\"authors\":\"Huawei Huang, Yunyun Qu, Lunzhi Deng\",\"doi\":\"10.1145/3058060.3058084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Symmetry ergodic matrices exponentiation (SEME) problem is to find x, given CxMDx, where C and D are the companion matrices of primitive polynomials and M is an invertible matrix over finite field. This paper proposes a new zero-knowledge identification scheme based on SEME problem. It is perfect zero-knowledge for honest verifiers. The scheme could provide a candidate cryptographic primitive in post quantum cryptography. Due to its simplicity and naturalness, low-memory, low-computation costs, the proposed scheme is suitable for using in computationally limited devices for identification such as smart cards.\",\"PeriodicalId\":152599,\"journal\":{\"name\":\"International Conference on Cryptography, Security and Privacy\",\"volume\":\"6 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Cryptography, Security and Privacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3058060.3058084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Cryptography, Security and Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3058060.3058084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对称遍历矩阵求幂(SEME)问题是给定CxMDx求x,其中C和D是原始多项式的伴矩阵,M是有限域上的可逆矩阵。提出了一种新的基于SEME问题的零知识识别方案。对于诚实的验证者来说,这是完美的零知识。该方案可为后量子密码学提供候选密码原语。该方案具有简单自然、低内存、低计算成本等特点,适用于智能卡等计算量有限的识别设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zero-Knowledge Identification Scheme Based on Symmetry Ergodic Matrices Exponentiation Problem
Symmetry ergodic matrices exponentiation (SEME) problem is to find x, given CxMDx, where C and D are the companion matrices of primitive polynomials and M is an invertible matrix over finite field. This paper proposes a new zero-knowledge identification scheme based on SEME problem. It is perfect zero-knowledge for honest verifiers. The scheme could provide a candidate cryptographic primitive in post quantum cryptography. Due to its simplicity and naturalness, low-memory, low-computation costs, the proposed scheme is suitable for using in computationally limited devices for identification such as smart cards.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信