使用视频监控进行车辆跟踪

S. Shrestha
{"title":"使用视频监控进行车辆跟踪","authors":"S. Shrestha","doi":"10.5772/intechopen.89405","DOIUrl":null,"url":null,"abstract":"In numerous applications including the security of individual vehicles as well as public transportation frameworks, the ability to follow or track vehicles is very helpful. Using computer vision and deep learning algorithms, the project deals with the concept of vehicle tracking in real-time based on continuous video stream from a CCTV camera to track the vehicles. The tracking system is tracking by detection paradigm. YOLOv3 object detection is applied to achieve faster object detection for real-time tracking. By implementing and improving the ideas of Deep SORT tracking for better occlusion handling, a better tracking system suitable for real-time vehicle tracking is presented. So as to demonstrate the achievability and adequacy of the framework, this chapter presents exploratory consequences of the vehicle following framework and a few encounters on handy executions.","PeriodicalId":258328,"journal":{"name":"Intelligent System and Computing","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Vehicle Tracking Using Video Surveillance\",\"authors\":\"S. Shrestha\",\"doi\":\"10.5772/intechopen.89405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In numerous applications including the security of individual vehicles as well as public transportation frameworks, the ability to follow or track vehicles is very helpful. Using computer vision and deep learning algorithms, the project deals with the concept of vehicle tracking in real-time based on continuous video stream from a CCTV camera to track the vehicles. The tracking system is tracking by detection paradigm. YOLOv3 object detection is applied to achieve faster object detection for real-time tracking. By implementing and improving the ideas of Deep SORT tracking for better occlusion handling, a better tracking system suitable for real-time vehicle tracking is presented. So as to demonstrate the achievability and adequacy of the framework, this chapter presents exploratory consequences of the vehicle following framework and a few encounters on handy executions.\",\"PeriodicalId\":258328,\"journal\":{\"name\":\"Intelligent System and Computing\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent System and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.89405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent System and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.89405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在包括个人车辆安全以及公共交通框架在内的许多应用中,跟踪或跟踪车辆的能力非常有用。该项目利用计算机视觉和深度学习算法,基于闭路电视摄像机的连续视频流来实时跟踪车辆。跟踪系统采用检测范式跟踪。采用YOLOv3目标检测,实现更快的目标检测,实现实时跟踪。通过对深度排序跟踪思想的实现和改进,提出了一种更适合于车辆实时跟踪的跟踪系统。为了证明该框架的可实现性和充分性,本章介绍了车辆跟随框架的探索性结果和一些方便执行的遭遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vehicle Tracking Using Video Surveillance
In numerous applications including the security of individual vehicles as well as public transportation frameworks, the ability to follow or track vehicles is very helpful. Using computer vision and deep learning algorithms, the project deals with the concept of vehicle tracking in real-time based on continuous video stream from a CCTV camera to track the vehicles. The tracking system is tracking by detection paradigm. YOLOv3 object detection is applied to achieve faster object detection for real-time tracking. By implementing and improving the ideas of Deep SORT tracking for better occlusion handling, a better tracking system suitable for real-time vehicle tracking is presented. So as to demonstrate the achievability and adequacy of the framework, this chapter presents exploratory consequences of the vehicle following framework and a few encounters on handy executions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信