银色机器人的多姿态人脸检测

Jongmin Yoon, Jongju Shin, Daijin Kim
{"title":"银色机器人的多姿态人脸检测","authors":"Jongmin Yoon, Jongju Shin, Daijin Kim","doi":"10.1109/URAI.2013.6677446","DOIUrl":null,"url":null,"abstract":"This paper presents a method which can detect multi-pose faces for robot. To overcome a disadvantage of conventional single-view face detection. we compute hyperplane using Linear Discriminant Analysis (LDA). These hyperplane are used to separate two different classes finely. This method could reduce false positive rate on branching nodes significantly, as well as the number of unnecessary branches. Consequently, overall speed of the detector could be improved about 24 percent compared to the case without hyperplane partition.","PeriodicalId":431699,"journal":{"name":"2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multi-pose face detection for silver robots\",\"authors\":\"Jongmin Yoon, Jongju Shin, Daijin Kim\",\"doi\":\"10.1109/URAI.2013.6677446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method which can detect multi-pose faces for robot. To overcome a disadvantage of conventional single-view face detection. we compute hyperplane using Linear Discriminant Analysis (LDA). These hyperplane are used to separate two different classes finely. This method could reduce false positive rate on branching nodes significantly, as well as the number of unnecessary branches. Consequently, overall speed of the detector could be improved about 24 percent compared to the case without hyperplane partition.\",\"PeriodicalId\":431699,\"journal\":{\"name\":\"2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/URAI.2013.6677446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URAI.2013.6677446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种机器人多姿态人脸检测方法。克服了传统单视图人脸检测的缺点。我们使用线性判别分析(LDA)计算超平面。这些超平面用于精细地分离两个不同的类。该方法可以显著降低分支节点的假阳性率,减少不必要的分支数量。因此,与没有超平面划分的情况相比,检测器的总体速度可以提高约24%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-pose face detection for silver robots
This paper presents a method which can detect multi-pose faces for robot. To overcome a disadvantage of conventional single-view face detection. we compute hyperplane using Linear Discriminant Analysis (LDA). These hyperplane are used to separate two different classes finely. This method could reduce false positive rate on branching nodes significantly, as well as the number of unnecessary branches. Consequently, overall speed of the detector could be improved about 24 percent compared to the case without hyperplane partition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信