{"title":"一种新的频率测量技术,用于石英微天平系统和其他基于谐振器的传感器系统","authors":"I. Shankar, S. Morris, C. Hutchens","doi":"10.1109/SFICON.2002.1159823","DOIUrl":null,"url":null,"abstract":"This paper describes the operation and design of a simple, low cost period counting system based on a D flip-flop mixer, directly applicable to quartz microbalances and quartz resonator-based sensors. The architecture of the period counting system is based on measuring the period of a low frequency difference signal obtained by subtracting a high stability reference frequency from the unknown frequency to be measured. An analysis of miscount errors caused by phase jitter in the input signals, when the period counting system is used as a quartz resonator based high temperature pressure sensor, is presented. We present a model that predicts miscount rates and discusses design rules to avoid phase jitter induced miscounts. The frequency measurement system was implemented using Peregrine's 0.5 micron silicon-on-insulator (SOI) UTSi/sup /spl reg// process. The integrated system was successfully tested and its functionality verified at 180/spl deg/C ambient temperature. This circuit, implemented as a low power, ultrahigh resolution, frequency measurement circuit, can facilitate the production of inexpensive, high accuracy battery powered sensors.","PeriodicalId":294424,"journal":{"name":"2nd ISA/IEEE Sensors for Industry Conference,","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A novel frequency measurement technique for quartz microbalance systems and other resonator-based sensor systems\",\"authors\":\"I. Shankar, S. Morris, C. Hutchens\",\"doi\":\"10.1109/SFICON.2002.1159823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the operation and design of a simple, low cost period counting system based on a D flip-flop mixer, directly applicable to quartz microbalances and quartz resonator-based sensors. The architecture of the period counting system is based on measuring the period of a low frequency difference signal obtained by subtracting a high stability reference frequency from the unknown frequency to be measured. An analysis of miscount errors caused by phase jitter in the input signals, when the period counting system is used as a quartz resonator based high temperature pressure sensor, is presented. We present a model that predicts miscount rates and discusses design rules to avoid phase jitter induced miscounts. The frequency measurement system was implemented using Peregrine's 0.5 micron silicon-on-insulator (SOI) UTSi/sup /spl reg// process. The integrated system was successfully tested and its functionality verified at 180/spl deg/C ambient temperature. This circuit, implemented as a low power, ultrahigh resolution, frequency measurement circuit, can facilitate the production of inexpensive, high accuracy battery powered sensors.\",\"PeriodicalId\":294424,\"journal\":{\"name\":\"2nd ISA/IEEE Sensors for Industry Conference,\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2nd ISA/IEEE Sensors for Industry Conference,\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFICON.2002.1159823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2nd ISA/IEEE Sensors for Industry Conference,","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFICON.2002.1159823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel frequency measurement technique for quartz microbalance systems and other resonator-based sensor systems
This paper describes the operation and design of a simple, low cost period counting system based on a D flip-flop mixer, directly applicable to quartz microbalances and quartz resonator-based sensors. The architecture of the period counting system is based on measuring the period of a low frequency difference signal obtained by subtracting a high stability reference frequency from the unknown frequency to be measured. An analysis of miscount errors caused by phase jitter in the input signals, when the period counting system is used as a quartz resonator based high temperature pressure sensor, is presented. We present a model that predicts miscount rates and discusses design rules to avoid phase jitter induced miscounts. The frequency measurement system was implemented using Peregrine's 0.5 micron silicon-on-insulator (SOI) UTSi/sup /spl reg// process. The integrated system was successfully tested and its functionality verified at 180/spl deg/C ambient temperature. This circuit, implemented as a low power, ultrahigh resolution, frequency measurement circuit, can facilitate the production of inexpensive, high accuracy battery powered sensors.