一种低功耗高性能基数-4近似平方电路

Satyendra R. Datla, M. Thornton, D. Matula
{"title":"一种低功耗高性能基数-4近似平方电路","authors":"Satyendra R. Datla, M. Thornton, D. Matula","doi":"10.1109/ASAP.2009.35","DOIUrl":null,"url":null,"abstract":"An implementation of a radix-4 approximate squaring circuit is described employing a new operand dual recoding technique. Approximate squaring circuits have numerous applications including use in computer graphics, digital radio modules, implementation of division and function approximation in ALU circuits. The theory of operation of the circuit is described including radix-4 operand dual recoding. Our recoding yields non negative partial squares and other features which simplify the design of the approximate squaring circuit. Results of the implementation in terms of delay, power, and area in both 130nm and 90nm technologies are presented and analyzed. The results show the circuit is power, area and performance efficient, yielding reduction factors by three or more when compared to a truncated multiplication approach using state-of-the-art logic synthesis tools. The radix-4 squaring circuit is also shown to be more efficient than a radix-2 state-of-the-art binary squaring circuit.","PeriodicalId":202421,"journal":{"name":"2009 20th IEEE International Conference on Application-specific Systems, Architectures and Processors","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"A Low Power High Performance Radix-4 Approximate Squaring Circuit\",\"authors\":\"Satyendra R. Datla, M. Thornton, D. Matula\",\"doi\":\"10.1109/ASAP.2009.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An implementation of a radix-4 approximate squaring circuit is described employing a new operand dual recoding technique. Approximate squaring circuits have numerous applications including use in computer graphics, digital radio modules, implementation of division and function approximation in ALU circuits. The theory of operation of the circuit is described including radix-4 operand dual recoding. Our recoding yields non negative partial squares and other features which simplify the design of the approximate squaring circuit. Results of the implementation in terms of delay, power, and area in both 130nm and 90nm technologies are presented and analyzed. The results show the circuit is power, area and performance efficient, yielding reduction factors by three or more when compared to a truncated multiplication approach using state-of-the-art logic synthesis tools. The radix-4 squaring circuit is also shown to be more efficient than a radix-2 state-of-the-art binary squaring circuit.\",\"PeriodicalId\":202421,\"journal\":{\"name\":\"2009 20th IEEE International Conference on Application-specific Systems, Architectures and Processors\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 20th IEEE International Conference on Application-specific Systems, Architectures and Processors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASAP.2009.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 20th IEEE International Conference on Application-specific Systems, Architectures and Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.2009.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

采用一种新的操作数双重编码技术,实现了一种基数-4近似平方电路。近似平方电路有许多应用,包括在计算机图形学、数字无线电模块、在ALU电路中实现除法和函数逼近。介绍了该电路的工作原理,包括基数-4操作数双重编码。我们的编码产生非负的部分平方和其他特征,简化了近似平方电路的设计。介绍并分析了在130nm和90nm技术下在延迟、功耗和面积方面的实现结果。结果表明,该电路具有功耗,面积和性能效率,与使用最先进的逻辑合成工具的截断乘法方法相比,产生的减少因子为三倍或更多。基数-4平方电路也被证明比基数-2最先进的二进制平方电路更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Low Power High Performance Radix-4 Approximate Squaring Circuit
An implementation of a radix-4 approximate squaring circuit is described employing a new operand dual recoding technique. Approximate squaring circuits have numerous applications including use in computer graphics, digital radio modules, implementation of division and function approximation in ALU circuits. The theory of operation of the circuit is described including radix-4 operand dual recoding. Our recoding yields non negative partial squares and other features which simplify the design of the approximate squaring circuit. Results of the implementation in terms of delay, power, and area in both 130nm and 90nm technologies are presented and analyzed. The results show the circuit is power, area and performance efficient, yielding reduction factors by three or more when compared to a truncated multiplication approach using state-of-the-art logic synthesis tools. The radix-4 squaring circuit is also shown to be more efficient than a radix-2 state-of-the-art binary squaring circuit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信