Shounak Dhar, M. Iyer, Saurabh N. Adya, L. Singhal, N. Rubanov, D. Pan
{"title":"一种有效的fpga时序驱动精细布局算法","authors":"Shounak Dhar, M. Iyer, Saurabh N. Adya, L. Singhal, N. Rubanov, D. Pan","doi":"10.1145/3036669.3036682","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new timing-driven detailed placement technique for FPGAs based on optimizing critical paths. Our approach extends well beyond the previously known critical path optimization approaches and explores a significantly larger solution space. It is also complementary to single-net based timing optimization approaches. The new algorithm models the detailed placement improvement problem as a shortest path optimization problem, and optimizes the placement of all elements in the entire timing critical path simultaneously, while minimizing the costs of adjusting the placement of adjacent non-critical elements. Experimental results on industrial circuits using a modern FPGA device show an average placement clock frequency improvement of 4.5%.","PeriodicalId":269197,"journal":{"name":"Proceedings of the 2017 ACM on International Symposium on Physical Design","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"An Effective Timing-Driven Detailed Placement Algorithm for FPGAs\",\"authors\":\"Shounak Dhar, M. Iyer, Saurabh N. Adya, L. Singhal, N. Rubanov, D. Pan\",\"doi\":\"10.1145/3036669.3036682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new timing-driven detailed placement technique for FPGAs based on optimizing critical paths. Our approach extends well beyond the previously known critical path optimization approaches and explores a significantly larger solution space. It is also complementary to single-net based timing optimization approaches. The new algorithm models the detailed placement improvement problem as a shortest path optimization problem, and optimizes the placement of all elements in the entire timing critical path simultaneously, while minimizing the costs of adjusting the placement of adjacent non-critical elements. Experimental results on industrial circuits using a modern FPGA device show an average placement clock frequency improvement of 4.5%.\",\"PeriodicalId\":269197,\"journal\":{\"name\":\"Proceedings of the 2017 ACM on International Symposium on Physical Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM on International Symposium on Physical Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3036669.3036682\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on International Symposium on Physical Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3036669.3036682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Effective Timing-Driven Detailed Placement Algorithm for FPGAs
In this paper, we propose a new timing-driven detailed placement technique for FPGAs based on optimizing critical paths. Our approach extends well beyond the previously known critical path optimization approaches and explores a significantly larger solution space. It is also complementary to single-net based timing optimization approaches. The new algorithm models the detailed placement improvement problem as a shortest path optimization problem, and optimizes the placement of all elements in the entire timing critical path simultaneously, while minimizing the costs of adjusting the placement of adjacent non-critical elements. Experimental results on industrial circuits using a modern FPGA device show an average placement clock frequency improvement of 4.5%.