并行相似性搜索的完美哈希结构

T. T. Tran, Mathieu Giraud, Jean-Stéphane Varré
{"title":"并行相似性搜索的完美哈希结构","authors":"T. T. Tran, Mathieu Giraud, Jean-Stéphane Varré","doi":"10.1109/IPDPSW.2015.105","DOIUrl":null,"url":null,"abstract":"Seed-based heuristics have proved to be efficient for studying similarity between genetic databases with billions of base pairs. This paper focuses on algorithms and data structures for the filtering phase in seed-based heuristics, with an emphasis on efficient parallel GPU/many cores implementation. We propose a 2-stage index structure which is based on neighborhood indexing and perfect hashing techniques. This structure performs a filtering phase over the neighborhood regions around the seeds in constant time and avoid as much as possible random memory accesses and branch divergences. Moreover, it fits particularly well on parallel SIMD processors, because it requires intensive but homogeneous computational operations. Using this data structure, we developed a fast and sensitive Open CL prototype read mapper.","PeriodicalId":340697,"journal":{"name":"2015 IEEE International Parallel and Distributed Processing Symposium Workshop","volume":"197 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Perfect Hashing Structures for Parallel Similarity Searches\",\"authors\":\"T. T. Tran, Mathieu Giraud, Jean-Stéphane Varré\",\"doi\":\"10.1109/IPDPSW.2015.105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Seed-based heuristics have proved to be efficient for studying similarity between genetic databases with billions of base pairs. This paper focuses on algorithms and data structures for the filtering phase in seed-based heuristics, with an emphasis on efficient parallel GPU/many cores implementation. We propose a 2-stage index structure which is based on neighborhood indexing and perfect hashing techniques. This structure performs a filtering phase over the neighborhood regions around the seeds in constant time and avoid as much as possible random memory accesses and branch divergences. Moreover, it fits particularly well on parallel SIMD processors, because it requires intensive but homogeneous computational operations. Using this data structure, we developed a fast and sensitive Open CL prototype read mapper.\",\"PeriodicalId\":340697,\"journal\":{\"name\":\"2015 IEEE International Parallel and Distributed Processing Symposium Workshop\",\"volume\":\"197 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Parallel and Distributed Processing Symposium Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW.2015.105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Parallel and Distributed Processing Symposium Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2015.105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基于种子的启发式算法已被证明是研究具有数十亿碱基对的遗传数据库之间相似性的有效方法。本文重点研究了基于种子的启发式算法中过滤阶段的算法和数据结构,重点研究了高效的并行GPU/多核实现。提出了一种基于邻域索引和完美哈希技术的两阶段索引结构。该结构在恒定时间内对种子周围的邻域进行滤波,尽可能避免随机存储器访问和分支发散。此外,它特别适合并行SIMD处理器,因为它需要密集但同构的计算操作。利用这种数据结构,我们开发了一个快速、灵敏的Open CL原型读映射器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perfect Hashing Structures for Parallel Similarity Searches
Seed-based heuristics have proved to be efficient for studying similarity between genetic databases with billions of base pairs. This paper focuses on algorithms and data structures for the filtering phase in seed-based heuristics, with an emphasis on efficient parallel GPU/many cores implementation. We propose a 2-stage index structure which is based on neighborhood indexing and perfect hashing techniques. This structure performs a filtering phase over the neighborhood regions around the seeds in constant time and avoid as much as possible random memory accesses and branch divergences. Moreover, it fits particularly well on parallel SIMD processors, because it requires intensive but homogeneous computational operations. Using this data structure, we developed a fast and sensitive Open CL prototype read mapper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信