基于形状的人体跟踪与行为分析的联合方法

Francesco Monti, C. Regazzoni
{"title":"基于形状的人体跟踪与行为分析的联合方法","authors":"Francesco Monti, C. Regazzoni","doi":"10.1109/ICIF.2010.5711856","DOIUrl":null,"url":null,"abstract":"In this paper a joint human tracking and recognition system is proposed. While usually these two functions are performed separately, it will be shown that it is possible to improve the estimation performances if these functions are done jointly. For this purpose, a Bayesian estimation framework is presented and implemented using sequential Monte Carlo techniques. Moreover it will be shown how the estimation can be performed efficiently by using the Generalized Hough Transform. The effectiveness of the proposed approach is demonstrated for a variety of image sequences.","PeriodicalId":341446,"journal":{"name":"2010 13th International Conference on Information Fusion","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A joint approach to shape-based human tracking and behavior analysis\",\"authors\":\"Francesco Monti, C. Regazzoni\",\"doi\":\"10.1109/ICIF.2010.5711856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a joint human tracking and recognition system is proposed. While usually these two functions are performed separately, it will be shown that it is possible to improve the estimation performances if these functions are done jointly. For this purpose, a Bayesian estimation framework is presented and implemented using sequential Monte Carlo techniques. Moreover it will be shown how the estimation can be performed efficiently by using the Generalized Hough Transform. The effectiveness of the proposed approach is demonstrated for a variety of image sequences.\",\"PeriodicalId\":341446,\"journal\":{\"name\":\"2010 13th International Conference on Information Fusion\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 13th International Conference on Information Fusion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIF.2010.5711856\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 13th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2010.5711856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种联合人体跟踪与识别系统。虽然这两个函数通常是单独执行的,但如果这些函数联合执行,则有可能提高估计性能。为此,提出了一个贝叶斯估计框架,并使用顺序蒙特卡罗技术实现了该框架。此外,还将展示如何使用广义霍夫变换有效地进行估计。在各种图像序列中证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A joint approach to shape-based human tracking and behavior analysis
In this paper a joint human tracking and recognition system is proposed. While usually these two functions are performed separately, it will be shown that it is possible to improve the estimation performances if these functions are done jointly. For this purpose, a Bayesian estimation framework is presented and implemented using sequential Monte Carlo techniques. Moreover it will be shown how the estimation can be performed efficiently by using the Generalized Hough Transform. The effectiveness of the proposed approach is demonstrated for a variety of image sequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信