利用曲面元分割相关立体距离图像

D. Murray, J. Little
{"title":"利用曲面元分割相关立体距离图像","authors":"D. Murray, J. Little","doi":"10.1109/TDPVT.2004.1335301","DOIUrl":null,"url":null,"abstract":"This work describes methods for segmenting planar surfaces from noisy 3D data obtained from correlation stereo vision. We make use of local planar surface elements called patchlets. Patchlets have 3D position, orientation and size parameters. As well, they have positional confidence measures based on the stereo sensor model. Patchlet orientations (i.e., surface normals) provide important additional dimensionality that reduces the ambiguity of segmentation-by-clustering. Patchlet size allows the use of continuity or coverage constraints when segmenting bounded surfaces from depth images. We use a region-growing approach to identify the number of surfaces that exist in a stereo image and obtain an initial estimate of the surface parameters. We refine segmentation using a maximum likelihood clustering approach that is optimised with Expectation-Maximisation. Confidence measures on the patchlet parameters allow proper weighting of patchlet contributions to the solution. We provide experimental results of the segmentation on complex outdoor scenes.","PeriodicalId":191172,"journal":{"name":"Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004.","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Segmenting correlation stereo range images using surface elements\",\"authors\":\"D. Murray, J. Little\",\"doi\":\"10.1109/TDPVT.2004.1335301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work describes methods for segmenting planar surfaces from noisy 3D data obtained from correlation stereo vision. We make use of local planar surface elements called patchlets. Patchlets have 3D position, orientation and size parameters. As well, they have positional confidence measures based on the stereo sensor model. Patchlet orientations (i.e., surface normals) provide important additional dimensionality that reduces the ambiguity of segmentation-by-clustering. Patchlet size allows the use of continuity or coverage constraints when segmenting bounded surfaces from depth images. We use a region-growing approach to identify the number of surfaces that exist in a stereo image and obtain an initial estimate of the surface parameters. We refine segmentation using a maximum likelihood clustering approach that is optimised with Expectation-Maximisation. Confidence measures on the patchlet parameters allow proper weighting of patchlet contributions to the solution. We provide experimental results of the segmentation on complex outdoor scenes.\",\"PeriodicalId\":191172,\"journal\":{\"name\":\"Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004.\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TDPVT.2004.1335301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TDPVT.2004.1335301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文描述了从相关立体视觉获得的噪声三维数据中分割平面的方法。我们使用局部平面元素,称为补丁。patch具有3D位置、方向和尺寸参数。此外,它们还具有基于立体传感器模型的位置置信度测量。斑块方向(即表面法线)提供了重要的额外维度,减少了聚类分割的模糊性。当从深度图像分割有界表面时,补丁大小允许使用连续性或覆盖约束。我们使用区域增长方法来识别立体图像中存在的表面数量,并获得表面参数的初始估计。我们使用期望最大化优化的最大似然聚类方法来细化分割。对补丁参数的置信度度量允许对补丁对解决方案的贡献进行适当的加权。给出了复杂户外场景的分割实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Segmenting correlation stereo range images using surface elements
This work describes methods for segmenting planar surfaces from noisy 3D data obtained from correlation stereo vision. We make use of local planar surface elements called patchlets. Patchlets have 3D position, orientation and size parameters. As well, they have positional confidence measures based on the stereo sensor model. Patchlet orientations (i.e., surface normals) provide important additional dimensionality that reduces the ambiguity of segmentation-by-clustering. Patchlet size allows the use of continuity or coverage constraints when segmenting bounded surfaces from depth images. We use a region-growing approach to identify the number of surfaces that exist in a stereo image and obtain an initial estimate of the surface parameters. We refine segmentation using a maximum likelihood clustering approach that is optimised with Expectation-Maximisation. Confidence measures on the patchlet parameters allow proper weighting of patchlet contributions to the solution. We provide experimental results of the segmentation on complex outdoor scenes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信