基于视频的夜间行人检测与跟踪

Geun-Hoo Lee, Gyuyeong Kim, Jong-Gwan Song, O. F. Ince, Jangsik Park
{"title":"基于视频的夜间行人检测与跟踪","authors":"Geun-Hoo Lee, Gyuyeong Kim, Jong-Gwan Song, O. F. Ince, Jangsik Park","doi":"10.1109/HSI.2017.8004999","DOIUrl":null,"url":null,"abstract":"This paper is an approach for pedestrian detection and tracking with infrared imagery. The detection phase is performed by AdaBoost algorithm based on Haar-like features. AdaBoost classifier is trained with datasets generated from infrared images. The number of negative images used for training with AdaBoost algorithm is 3000. For positive training, 1000 samples are used After detecting the pedestrian with AdaBoost classifier, we proposed the Tracking-Learning-Detection (TLD) frameworks tracking strategies. TLD frameworks are preferred in this study because of its high accuracy rate and computation speed Tracking performance comparison is made between TLD and particle filtering. Results prove that TLD performs a higher tracking rate than particle filtering.","PeriodicalId":355011,"journal":{"name":"2017 10th International Conference on Human System Interactions (HSI)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Video based pedestrian detection and tracking at night-time\",\"authors\":\"Geun-Hoo Lee, Gyuyeong Kim, Jong-Gwan Song, O. F. Ince, Jangsik Park\",\"doi\":\"10.1109/HSI.2017.8004999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is an approach for pedestrian detection and tracking with infrared imagery. The detection phase is performed by AdaBoost algorithm based on Haar-like features. AdaBoost classifier is trained with datasets generated from infrared images. The number of negative images used for training with AdaBoost algorithm is 3000. For positive training, 1000 samples are used After detecting the pedestrian with AdaBoost classifier, we proposed the Tracking-Learning-Detection (TLD) frameworks tracking strategies. TLD frameworks are preferred in this study because of its high accuracy rate and computation speed Tracking performance comparison is made between TLD and particle filtering. Results prove that TLD performs a higher tracking rate than particle filtering.\",\"PeriodicalId\":355011,\"journal\":{\"name\":\"2017 10th International Conference on Human System Interactions (HSI)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 10th International Conference on Human System Interactions (HSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HSI.2017.8004999\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 10th International Conference on Human System Interactions (HSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HSI.2017.8004999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种基于红外图像的行人检测与跟踪方法。检测阶段采用基于Haar-like feature的AdaBoost算法。AdaBoost分类器使用红外图像生成的数据集进行训练。AdaBoost算法用于训练的负图像数量为3000。在AdaBoost分类器检测行人后,提出了跟踪-学习-检测(tracking - learning - detection, TLD)框架的跟踪策略。由于TLD框架具有较高的准确率和计算速度,因此在本研究中首选TLD框架。结果表明,TLD比粒子滤波具有更高的跟踪速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Video based pedestrian detection and tracking at night-time
This paper is an approach for pedestrian detection and tracking with infrared imagery. The detection phase is performed by AdaBoost algorithm based on Haar-like features. AdaBoost classifier is trained with datasets generated from infrared images. The number of negative images used for training with AdaBoost algorithm is 3000. For positive training, 1000 samples are used After detecting the pedestrian with AdaBoost classifier, we proposed the Tracking-Learning-Detection (TLD) frameworks tracking strategies. TLD frameworks are preferred in this study because of its high accuracy rate and computation speed Tracking performance comparison is made between TLD and particle filtering. Results prove that TLD performs a higher tracking rate than particle filtering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信