参数源模型熵编码及其在图像和视频数据快速高效压缩中的应用

K. Minoo, Truong Q. Nguyen
{"title":"参数源模型熵编码及其在图像和视频数据快速高效压缩中的应用","authors":"K. Minoo, Truong Q. Nguyen","doi":"10.1109/DCC.2009.80","DOIUrl":null,"url":null,"abstract":"In this paper a framework is proposed for efficient entropy coding of data which can be represented by a parametric distribution model. Based on the proposed framework, an entropy coder achieves coding efficiency by estimating the parameters of the statistical model (for the coded data), either via Maximum A Posteriori (MAP) or Maximum Likelihood (ML) parameter estimation techniques.","PeriodicalId":377880,"journal":{"name":"2009 Data Compression Conference","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Entropy Coding via Parametric Source Model with Applications in Fast and Efficient Compression of Image and Video Data\",\"authors\":\"K. Minoo, Truong Q. Nguyen\",\"doi\":\"10.1109/DCC.2009.80\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a framework is proposed for efficient entropy coding of data which can be represented by a parametric distribution model. Based on the proposed framework, an entropy coder achieves coding efficiency by estimating the parameters of the statistical model (for the coded data), either via Maximum A Posteriori (MAP) or Maximum Likelihood (ML) parameter estimation techniques.\",\"PeriodicalId\":377880,\"journal\":{\"name\":\"2009 Data Compression Conference\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.2009.80\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2009.80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种用参数分布模型表示的数据的有效熵编码框架。基于所提出的框架,熵编码器通过最大后验A (MAP)或最大似然(ML)参数估计技术估计统计模型的参数(用于编码数据)来实现编码效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Entropy Coding via Parametric Source Model with Applications in Fast and Efficient Compression of Image and Video Data
In this paper a framework is proposed for efficient entropy coding of data which can be represented by a parametric distribution model. Based on the proposed framework, an entropy coder achieves coding efficiency by estimating the parameters of the statistical model (for the coded data), either via Maximum A Posteriori (MAP) or Maximum Likelihood (ML) parameter estimation techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信