一种用于心跳分类的高效心电模型

S. Jokic, S. Krco, V. Delić, D. Sakac, I. Jokic, Z. Lukic
{"title":"一种用于心跳分类的高效心电模型","authors":"S. Jokic, S. Krco, V. Delić, D. Sakac, I. Jokic, Z. Lukic","doi":"10.1109/NEUREL.2010.5644105","DOIUrl":null,"url":null,"abstract":"In this paper, an efficient heart beat classification algorithm suitable for implementation on mobile devices is presented. A simplified ECG model is used for feature extraction in the time domain. The QRS complex is modeled using straight lines, while P and T waves are modeled using parabolas. The model parameters are estimated by minimizing the root mean square (RMS) of the model error. Heart beats are classified as one of the following: normal (N), supraventricular (S) and Ventricular (V) ectopic beats using a feed-forward neural network. A series of tests have been performed to evaluate the classification algorithm using the MIT-BIH arrhythmia database ECG signals subset and expressed in the terms of sensitivity (Se), specificity (Sp) and accuracy (Acc). The best results were achieved when the classification algorithm was applied on the third model set. The proposed algorithm has been implemented as a J2ME mobile application. It has been tested on signals recorded by a telemedicine health care system and have achieved an average accuracy above 93%.","PeriodicalId":227890,"journal":{"name":"10th Symposium on Neural Network Applications in Electrical Engineering","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"An efficient ECG modeling for heartbeat classification\",\"authors\":\"S. Jokic, S. Krco, V. Delić, D. Sakac, I. Jokic, Z. Lukic\",\"doi\":\"10.1109/NEUREL.2010.5644105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an efficient heart beat classification algorithm suitable for implementation on mobile devices is presented. A simplified ECG model is used for feature extraction in the time domain. The QRS complex is modeled using straight lines, while P and T waves are modeled using parabolas. The model parameters are estimated by minimizing the root mean square (RMS) of the model error. Heart beats are classified as one of the following: normal (N), supraventricular (S) and Ventricular (V) ectopic beats using a feed-forward neural network. A series of tests have been performed to evaluate the classification algorithm using the MIT-BIH arrhythmia database ECG signals subset and expressed in the terms of sensitivity (Se), specificity (Sp) and accuracy (Acc). The best results were achieved when the classification algorithm was applied on the third model set. The proposed algorithm has been implemented as a J2ME mobile application. It has been tested on signals recorded by a telemedicine health care system and have achieved an average accuracy above 93%.\",\"PeriodicalId\":227890,\"journal\":{\"name\":\"10th Symposium on Neural Network Applications in Electrical Engineering\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"10th Symposium on Neural Network Applications in Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEUREL.2010.5644105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th Symposium on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2010.5644105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文提出了一种适用于移动设备的高效心跳分类算法。采用简化的心电模型进行时域特征提取。QRS复合体使用直线建模,而P波和T波使用抛物线建模。通过最小化模型误差的均方根(RMS)来估计模型参数。使用前馈神经网络将心跳分为正常(N)、室上(S)和室外(V)异位。采用麻省理工学院- bih心律失常数据库心电信号子集,并以敏感性(Se)、特异性(Sp)和准确性(Acc)表示,进行了一系列试验来评估分类算法。当分类算法应用于第三个模型集时,得到了最好的结果。该算法已作为J2ME移动应用程序实现。它已经在远程医疗保健系统记录的信号上进行了测试,平均准确率达到93%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient ECG modeling for heartbeat classification
In this paper, an efficient heart beat classification algorithm suitable for implementation on mobile devices is presented. A simplified ECG model is used for feature extraction in the time domain. The QRS complex is modeled using straight lines, while P and T waves are modeled using parabolas. The model parameters are estimated by minimizing the root mean square (RMS) of the model error. Heart beats are classified as one of the following: normal (N), supraventricular (S) and Ventricular (V) ectopic beats using a feed-forward neural network. A series of tests have been performed to evaluate the classification algorithm using the MIT-BIH arrhythmia database ECG signals subset and expressed in the terms of sensitivity (Se), specificity (Sp) and accuracy (Acc). The best results were achieved when the classification algorithm was applied on the third model set. The proposed algorithm has been implemented as a J2ME mobile application. It has been tested on signals recorded by a telemedicine health care system and have achieved an average accuracy above 93%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信