基于深度学习方法的探地雷达埋地目标探测

E. Aydin, S. E. Yüksel
{"title":"基于深度学习方法的探地雷达埋地目标探测","authors":"E. Aydin, S. E. Yüksel","doi":"10.1109/SIU.2017.7960299","DOIUrl":null,"url":null,"abstract":"Deep learning has started to outperform its rivals over the last five years, due to its capability to automatically find the features in the data, and classify them. In this study, deep learning is used to detect a buried target collected by a ground penetrating radar (GPR). The GPR data is generated by the GprMax simulation program, and a deep learning model of two convolution and two pooling layers is proposed to classify this data. The proposed model is trained with two classes, with a hundred targeted targets and a hundred non-targets. At the end of the training, the resulting features were examined in each layer of the deep architecture. The initial results presented in this study emphasize the advantages of deep learning over traditional classification methods, since it allows for high classification rates without the need for feature extraction.","PeriodicalId":217576,"journal":{"name":"2017 25th Signal Processing and Communications Applications Conference (SIU)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Buried target detection with ground penetrating radar using deep learning method\",\"authors\":\"E. Aydin, S. E. Yüksel\",\"doi\":\"10.1109/SIU.2017.7960299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning has started to outperform its rivals over the last five years, due to its capability to automatically find the features in the data, and classify them. In this study, deep learning is used to detect a buried target collected by a ground penetrating radar (GPR). The GPR data is generated by the GprMax simulation program, and a deep learning model of two convolution and two pooling layers is proposed to classify this data. The proposed model is trained with two classes, with a hundred targeted targets and a hundred non-targets. At the end of the training, the resulting features were examined in each layer of the deep architecture. The initial results presented in this study emphasize the advantages of deep learning over traditional classification methods, since it allows for high classification rates without the need for feature extraction.\",\"PeriodicalId\":217576,\"journal\":{\"name\":\"2017 25th Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 25th Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2017.7960299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2017.7960299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

在过去的五年里,深度学习已经开始超越它的竞争对手,因为它能够自动找到数据中的特征,并对它们进行分类。在本研究中,将深度学习应用于探地雷达(GPR)采集的埋地目标检测。利用GprMax仿真程序生成探地雷达数据,提出了一种两层卷积两层池化的深度学习模型对数据进行分类。该模型用两个类进行训练,其中有100个目标和100个非目标。在训练结束时,在深度体系结构的每一层中检查得到的特征。本研究中提出的初步结果强调了深度学习相对于传统分类方法的优势,因为它允许在不需要特征提取的情况下实现高分类率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Buried target detection with ground penetrating radar using deep learning method
Deep learning has started to outperform its rivals over the last five years, due to its capability to automatically find the features in the data, and classify them. In this study, deep learning is used to detect a buried target collected by a ground penetrating radar (GPR). The GPR data is generated by the GprMax simulation program, and a deep learning model of two convolution and two pooling layers is proposed to classify this data. The proposed model is trained with two classes, with a hundred targeted targets and a hundred non-targets. At the end of the training, the resulting features were examined in each layer of the deep architecture. The initial results presented in this study emphasize the advantages of deep learning over traditional classification methods, since it allows for high classification rates without the need for feature extraction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信